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Abstract

We analyze the complexity of a quantum algorithm based on Gaussian boson sam-

pling for theGraphIsomorphism problem as well as develop a new quantum algorithm

for the task of graph classification. We first analyze the complexity of the graph iso-

morphism algorithm under three different scaling assumptions of the two parameters

that determine its time complexity: the number of modes M of the boson sampler, or

equivalently the number of vertices of the graphs, and the number of photons n sent

into the interferometer of the boson sampler. We then present a way of using Gaussian

boson sampling for a less difficult but equally practical task: graph classification. This

is done by defining a quantum feature map that maps graphs to a vector in a quan-

tum Hilbert space. Our simulations and complexity analysis indicate that the quantum

feature map is competitive in terms of classification accuracy and speed with current

state-of-the-art graph kernels used for graph classification.
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List of Symbols & Abbreviations

The next list describes several symbols and abbreviations that will be later used within the

body of the document

|Ω| The number of elements in the sample space of the probability distribution we sample

from

n A detection pattern generated from sampling a boson sampler

GBS Gaussian boson sampler

PNRD Photon number resolving detector

M The number of modes of the boson sampler and the number of vertices in a graph

n The total number of photons sent into the interferometer of the boson sampler

ni Number of photons detected in the ith mode of a boson sampler

o(f(x)) The set of all functions strictly upper bounded by the function f(x)

w(f(x)) The set of all functions strictly lower bounded by the function f(x)
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1 Introduction

Quantum computing promises a quantum computational advantage over classical computing,

through the use of quantum algorithms, in terms of exponential speed-ups for some prob-

lems that may be intractable on classical computers, such as integer factorization, and some

that are known to be intractable on classical computers such as quantum simulation. The

power of these quantum algorithms comes from the fact that they exploit useful properties

of quantum particles such as quantum entanglement and superposition. However for these

quantum algorithms to be able to solve problems of non-trivial size they require quantum

computers with many thousands of fault tolerant qubits. The development of these com-

puters however is still very much in its early stages with quantum computers having even

1000 fault tolerant qubits being a massive challenge to construct. Due to this fact researchers

have tried to find ways of demonstrating quantum computational advantage with the smallest

number of resources (qubits) possible. The task many researchers have used to demonstrate

quantum computational advantage is sampling. More specifically it is the task of sampling

from a probability distribution that describes a quantum system. The now famous paper

from Google [1] and the more recent paper from USTC, in China, [2] both demonstrate this

by sampling from a probability distribution that describe a random quantum circuit and a

random quantum optics network respectively. However these sampling tasks, on their own,

are not useful for anything practical beyond the demonstration of quantum advantage which

is why researchers have recently moved in the direction of trying to find useful applications

for them. Reconstructing the whole probability distribution through sampling would provide

useful information for applications but as we will show later reconstructing the whole distri-

bution can not be done in a reasonable amount of time as the number samples required to do

so is prohibitively high. The Toronto-based quantum start-up Xanadu has published research

[3, 4, 5, 6] on how sampling from a probability distribution that depends on a quantum optics

network can be used to solve graph based problems. The goals of this thesis were, first, to

come to a thorough understanding of the advantages and limitations of the Xanadu approach

and, second, to explore new research ideas, specifically for machine learning with graph based

data, that build off these advantages while also trying to strengthen the weaknesses. The

topics covered in this thesis and the research mentioned previously span a range of topics in

quantum physics, theoretical computer science, and machine learning. The following section

is meant to clearly define many of the terms and concepts used very often in the literature

of the relevant sub-fields.
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(a) Undirected weighted 4-vertex graph with 4 edges


0 4 3 0
4 0 6 9
3 6 0 0
0 9 0 0


(b) Adjacency matrix of graph

Figure 1: 4-vertex graph and its corresponding adjacency matrix

1.1 Graph Theory

1.1.1 Basic Theory & Notation

In this paper we define a graph G = (V,E) as a set of vertices V = {v1, v2, ...} and a set

of edges E = {v1v2, v2v1, ...}. Vertices of the graph are connect by the edges. The edges of

the graph can have an edge weight wi ∈ R associated with them. We will define a graph as

unweighted if all edges have the same edge weight wi = 1 ∀i and weighted otherwise. Graphs

can be directed meaning the edges can point from one vertex to another. For example for a

directed graph we can have the edge v1v2 be an arrow pointing from v1 to v2 but not from

v2 to v1 in which case v1v2 ̸= v2v1. For undirected graphs, which is what we will exclusively

work with in this paper, v1v2 = v2v1. The degree of a vertex v is the number of edges that

are connected to it. The maximum degree of a graph is the largest degree of a vertex in its

vertex set. Graphs can be represented in a number of ways such as a diagram as in figure 1a

or a more computationally useful way as an adjacency matrix. The adjacency matrix of an

undirected graph G with n vertices is an n×n symmetric matrix A with entries aij where aij

is the weight of the edge connecting vertices i and j. The spectrum of a graph is the set of

eigenvalues of its adjacency matrix. An example of a graph with 4 vertices and 4 edges and

its adjacency matrix is shown in figure 1. The Hafnian and the permanent of a matrix are

two concepts that play a central role in the application of quantum optics to graph problems

discussed later in this paper. The permanent of a n× n matrix A is defined as

Perm(A) =
∑
π∈Sn

n∏
i=1

Ai,π(i), (1)
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(b) The three perfect matchings of the complete 4-
vertex graph

Figure 2: The complete graph of 4 vertices and its corresponding perfect matching

where Sn is the set of all permutations of the list (1, 2, 3..., n) and π(i) is the ith element of

the list π. The formula for the permanent is very similar to that of the determinant of an

n× n matrix A

Det(A) =
∑
π∈Sn

sgn(π)
n∏

i=1

Ai,π(i), (2)

where sgn(π) is the signature of the permutation π and is +1 when the permutation is even

and -1 when it is odd. The presence of sgn(π) allows for the determinant to be calculated in

a time that is polynomial in the matrix size, placing it in the computational complexity class

P. However the problem of computing the permanent of a n× n matrix is in the complexity

class #P and in fact is #P-complete [7]. These complexity classes and others are explained

in appendix C. The Hafnian of a 2n× 2n matrix is defined in a similar form as

Haf(A) =
∑
π∈Mn

∏
(u,v)∈π

Au,v, (3)

whereMn is the partition of the set {1, 2, ..., 2n} into unordered disjoint pairs. For example if

n = 2 then Mn = ({(1, 2), (3, 4)}, {(1, 4), (2, 3)}, {(1, 3), (2, 4)}). If A is the adjacency matrix

of a unweighted graph then the Hafnian is equal to the number of perfect matchings of the

vertices of the graph. A perfect matching is a partition of the vertex set of a graph into

pairs such that each vertex is connected to exactly one edge from the edge set. All perfect

matchings of the complete 4-vertex graph are shown in figure 2. The permanent is related to

the Hafnian via the relationship

Perm(A) = Haf

[
0 A

AT 0

]
. (4)

Therefore computing the Hafnian must be as difficult as computing the permanent.
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1.1.2 Graph Isomorphism

The GraphIsomorphism problem can be summarized as: given 2 graphs G = (V,E) and

G′ = (V ′, E ′), is there a bijection between the 2 vertex sets V and V ′ that preserves the

adjacency of vertices that is, two vertices u and v in G are adjacent if and only if they are

adjacent in G′ under the bijection.

Definition 1 (GraphIsomorphism). Let G = (V,E) and G′ = (V ′, E ′) be two graphs.

Then these graphs are isomorphic if and only if there exists a bijection ϕ : V → V ′ that

preservers the edges in the graph so if vivj ∈ E then ϕ(vi)ϕ(vj) ∈ E ′. GraphIsomorphism

is the problem of determining if such a bijection exists.

An example of two isomorphic graphs and the bijection of their vertex sets is show in

figure 3. The GraphIsomorphism problem is in the class NP but it is not known if it is NP-

hard. As explained in [8] the belief that there exists an efficient quantum algorithm that solves

GraphIsomorphism is supported by the fact that there exists one for the problem of integer

factorization (Shor’s algorithm) which has similar complexity to GraphIsomorphism and

the fact that there already exists an adiabatic quantum-annealing method which solves the

problem. Since the method is adiabatic its complexity is not known but since adiabatic and

algorithmic quantum computing are equivalent [9] the implication is that there also exists an

algorithmic solution to the problem. A graph invariant I(G) of a graph G is a property that

all isomorphic graphs share. Examples of invariants include number of vertices, number of

edges, graph spectrum among others. One can show two graphs are not isomorphic if one has

an invariant property the other doesn’t. For example if two graphs have a different number of

vertices they can not be isomorphic however having the same number of vertices is not enough

to deduce the graphs are isomorphic. Such an invariant is precisely what was discovered in

[6] for graphs encoded into a Gaussian boson sampler. A graph invariant is complete if

I(G) = I(G′) implies G and G′ are isomorphic. The second graph invariant presented in [6]

is complete only for isospectral graphs that is, graphs whose adjacency matrices have equal

sets of eigenvalues.

1.1.3 Graph Classification

In many real world applications of graph theory we aren’t so much interested in if two

graphs are isomorphic but rather if they belong to the same class. Graph classification is the

problem of determining the class of a graph given a representation of it such as its adjacency

matrix. For example chemical compounds can be represented as graphs with the vertices

being atoms and and the edges being different types of bonds. We would then want to

determine what class each molecules belongs to given a set of possible classes. For example
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Figure 3: Two isomorphic graphs and their corresponding bijection

the graph data set PTC FM is a collection of various molecules where the classes are the

molecules’ carcinogenicity for rodents. These types of classification problems can be handled

via the use of supervised machine learning.

1.1.4 Supervised Machine Learning

Most supervised machine learning problems can be formulated as follows: given an initial

input set X = (x⃗1, ..., x⃗m) of d-dimensional vectors and a set of class labels Y = (y1, ..., ym),

where yi is the corresponding class label for the element xi, how can we use this input set

and class label set to train a classifier that will be able to accurately classify new input sets.

In practice the input set and class label set are represented as data tables where the rows

are the elements (vectors) and columns are the dimensions (features) of the vectors. For

example if we have a data set, as in figure 4, that consists of people who do and do not have

dementia, along with information about each person such as hippocampus volume, blood

pressure and age, the rows of the data table, and thus the elements in our input set, would

be each patient and the columns would corresponds to age, blood pressure, hippocampus

volume and dementia diagnosis. The dementia diagnosis column would be our class label set

with each entry either being 1 or 0 corresponding to whether the patient is diagnosed with

dementia or not. The task would now be to train machine learning classifiers with this data

so that they can accurately classify new patients. In machine learning a feature map is a

way of mapping data to higher dimensional spaces to make tasks like classification easier.

This is because data that is not linearly separable in its original space can become linearly

separable when mapped to a higher dimensional space. An example of such an instance is

given in figure 5.
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Figure 4: Example data table for ML applications. We have three data points (rows) which are
the elements of X and three features (d1,d2,d3) which are the dimensions of the vectors in X , and
the label column Y which contains the class label of each data point.

Definition 2 (Feature Map). Let F be a Hilbert space which we call the feature space, X
an input set and x an element from the input set. A feature map is a map φ: X → F from

inputs to vectors in the Hilbert space. The vectors φ(x) ∈ F are called feature vectors.

A kernel is a function that measures the similarity of two elements from the input set

in the feature space. Kernel methods refer to machine learning algorithms that learn by

comparing pairs of data points using this similarity measure [10]. In our context we have a

set of graphs G and we call a kernel, κ, a graph kernel if it is of the form κ : G × G → R.

Definition 3 (Kernel Function). Let X be a nonempty set, called the input set. A function

κ : X ×X → R, where X ×X is the set of all ordered pairs (xi, xj) with xi, xj ∈ X , is called a

kernel if the Gram matrix K with entries Ki,j = κ(xi, xj), where i, j ∈ (1, 2, ..,m), is positive

semidefinite, in other words, if for any finite subset {x1, ..., xm} ⊆ X with m ≥ 2,

λ ≥ 0 ∀λ ∈ {λ1, ..., λm}, (5)

where {λ1, ..., λm} is the set of eigenvalues of the Gram matrix.

The inner product κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ is the classic example of a kernel function and

since all feature spaces are Hilbert spaces, and therefore have an inner product defined on

them, all feature maps give rise to a kernel. Since graph based data is most often represented

as an adjacency matrix it is useful to define a feature map, and thus a kernel function, that

maps each graphs adjacency matrix to a feature vector thereby allowing us to use them as

inputs to machine learning classifiers such as a support vector machine (SVM).

1.1.5 Algorithmic Complexity

In computer science and machine learning when designing algorithms we want to quantify

the amount of resources an algorithm will need to solve a problem as the size of the prob-

lem increases. We define time complexity as the number of elementary operations, such as

10



Figure 5: In the original 2-D input space the data points, which belong either to the class ’red’
or ’blue’, are not separable by a linear function (the decision boundary) but after mapping the
points to feature vectors in a higher dimensional space a linear function is able to separate the two
classes. This linear decision boundary is calculated by the supervised machine learning models like
the SVM.

multiplication of scalars, an algorithm must perform as the size of the problem it is solving

increases. We define space complexity as the amount of memory an algorithm requires to

solve a problem as the size of the problem increases. Lastly we will define the sample com-

plexity of an algorithm as how many times it must sample from a particular distribution that

describes the problem we are trying to solve to accurately approximate it’s probabilities.

1.2 Quantum Optics

1.2.1 Basic Theory & Notation

In quantum mechanics the standard way of denoting the state of a particle is through

Dirac notation. For example a spin-1
2
particle can either be in the state +z or −z or any

superposition of the two states. So in general we can denote the quantum state of the particle,

|ψ⟩, as
|ψ⟩ = c+ |+z⟩+ c− |−z⟩ . (6)

Where |c+|2 and |c−|2 are the probabilities that the particle is in the +z and −z state

respectively upon measurement. A spin-1
2
particle is one model of what’s called a qubit: the

quantum computing analogy of a classical bit. For a system of N particles we can denote

the quantum state of the system as the tensor product of the states of each of the individual
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particles

|Ψ⟩ =
N⊗
i=1

|ψi⟩ = |ψ1⟩ ⊗ ...⊗ |ψN⟩ = |ψ1, ..., ψN⟩ . (7)

By contrast in quantum optics instead of qubits the system used to represent bits are the

modes of the quantized electromagnetic field, called qumodes. While qubits are described by

a two-dimensional Hilbert space, qumodes are described by an infinite dimensional Hilbert

space. A general qumode state can be written as

|ψ⟩ =
∞∑
n=0

cn |n⟩ , (8)

where we have the basis states |0⟩ , |1⟩ , |2⟩ , ... which are known as Fock states. The Fock state

|n⟩ can be interpreted as a qumode which contains n photons. The ith qumode of a quantum

system can be described as the familiar quantum harmonic oscillator. The Hamiltonian of a

mechanical oscillator is defined as

Hi =
p̂i

2

2m
+
kx̂i

2

2
. (9)

The dimensionless quadrature operators Q and P are defined as

Q = βx̂ (10)

P =
p̂

βℏ
, (11)

where β has dimensions of inverse length and is defined as

β =

√
mω

ℏ
(12)

with ω =
√

k
m

being the resonance frequency of the quantum harmonic oscillator. We also

define the non-Hermitian annihilation and creation ladder operators a and a† as

a =
1√
2
(Q+ iP ) (13)

a† =
1√
2
(Q− iP ) (14)
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The quadrature operators can also be written in terms of the ladder operators as

Q =
1√
2
(a+ a†) (15)

P =
1

i
√
2
(a− a†) (16)

The state of a quantum system with M modes can be uniquely characterized by its

Wigner function W (q,p) where q ∈ RM and p ∈ RM are the position and momentum

quadrature vectors respectively. A Gaussian state is a state whose Wigner function is a

Gaussian and can be described by a 2M × 2M covariance matrix V and two M -dimensional

vectors of means q̄, p̄. It is often useful to write the covariance matrix in terms of the

complex amplitude α = 1√
2ℏ(q+ ip) ∈ CM , which is complex-normal distributed with mean

ᾱ = 1√
2ℏ(q̄+ ip̄) ∈ CM and covariance matrix Σ ∈ C2M×2M . Lastly the modes of the system

can have displacements applied to them. This displacement is described by a displacement

vector d = (d1, ..., dM , d
∗
1, ..., d

∗
M)T ∈ C2M . A displacement changes the mean of the M -mode

Gaussian quantum state but leaves the covariance matrix unaffected.

1.2.2 Boson Sampling

Definition 4 (BosonSampling). Let M be the number of modes in a linear interferometer

whose input is n single-photon Fock states, |1⟩, in the first n modes with the otherM−n modes

being vacuum states |0⟩. Let Û be the unitary matrix of the interferometer acting on the M

modes. Let DÛ be the probability distribution of elements of the sample space, which consists

of all lists (s1, .., sM) of non-negative integers satisfying s1+ · · ·+sM = n. BosonSampling

is the problem of sampling either exactly or approximately from the distribution DÛ . Where

sampling approximately from the distribution means the algorithm samples from a distribution

D′
Û such that ||D′

Û −DÛ ||1 ≤ ϵ for some error ϵ where || · ||1 is the L1 distance.

At its most basic level boson sampling consists of passing photons thorough a linear

interferometer, that consists of beamsplitters and phase-shifters, and observing their output

configurations which we call detection events and denote as n = (n1, ..., nM) where ni is the

number of photons detected in the ith mode. In the quanutm mechanics formulation this

output pattern can be written as the quantum state

|Ψ⟩ = |n1⟩ ⊗ ...⊗ |nM⟩ = |n1, ..., nM⟩ . (17)

The detectors in the device can be either photon number resolving detectors (PNRDs)

or threshold detectors. If the detectors are PNRDs then they count how many photons are

13



detected in that mode so ni ∈ N. If the detectors are threshold detectors then they simply

detect if any photons have been detected in that mode or not. So a ’click’ would correspond

to detecting one (or several) photon(s), ni = 1, and no click corresponds to no photons

detected, ni = 0, so ni ∈ {0, 1}. We will focus on GBS with PNRDs for the first part

of the thesis. A boson sampler is a non-universal model of photonic quantum computing,

meaning it’s not as computationally powerful as a quantum computer with error correction.

However simulation of sampling from a boson sampler has been argued to be intractable

on a classical computer. This was first argued by Aaronson & Arkhipov in [11] where they

prove that the existence of a polynomial-time classical algorithm that samples exactly from

the probability distribution of a boson sampler would mean that P#P = BPPNP and thus

the polynomial hierarchy would collapse to the third level which would be a shocking result

in complexity theory as explained in appendix C. They also show that if there exists a fast

classical algorithm that samples approximately from the probability distribution of a boson

sampler this would mean that there is also a BPPNP algorithm for estimating |Perm(X)|2

with high probability for a Gaussian random matrix X ∈ Rn×n. This fact, along with two

conjectures that Aaronson & Arkhipov give evidence for but do not prove, would also imply

the collapse of the polynomial hierarchy to the third level. They also show that for a M -

mode boson sampler with photon detection events n = (n1, n2, ..., nM), where ni ∈ N, the
probability of detecting a specific output photon pattern n is given by

p(n) =
|Perm(Un,m)|2

n!m!
. (18)

Where n! = n1!n2! · · ·nM !, m is the input photon pattern as opposed to the output pho-

ton pattern n and m! = m1!m2! · · ·mM ! and Perm(Un,m) is the permanent of the matrix

Un,m. The matrix Un,m is a submatrix of the linear transformation that characterizes the

interferometer and it depends on both the input and output patterns of the photons [12, 13].

Since calculating the permanent of a matrix is known to be #P-complete the calculation

becomes quickly intractable as the dimensions of the matrix increase. Because calculating

the probabilities of measurement outcomes for a boson sampler requires calculating the per-

manent of 2M×2M matrices it follows that the BosonSampling problem is also classically

hard, at least for the exact case. Thus the hardness of classically simulating a boson sam-

pler along with the relatively small number of resources needed to implement it makes it

a good candidate for demonstrating quantum advantage with minimal resources, with the

caveat that BosonSampling is a sampling problem which is fundamentally different from a

decision problem, such as GraphIsomorphism, potentially making it more difficult to find

computational applications.
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(a) The first n modes start in the single photon Fock state |1⟩ with the other M − n modes in the
vacuum state |0⟩ before being sent through the network of beamsplitters (the interferometer).

(b) As a quantum circuit the interferometer is represented by a unitary quantum gate Û

Figure 6: Diagram of 3-mode boson sampler both in its experimental form and circuit form

1.2.3 Gaussian Boson Sampling

Due to certain hardware constraints, in particular the lack of deterministic single-photon

sources, other variations of boson sampling have been proposed such as Gaussian boson

sampling which replaces the single-photon sources with squeezers. A M -mode Gaussian

boson sampler (GBS), depicted in figure 7, consists of an array of M squeezers outputting

squeezed light to an interferometer that is made up of beam splitters between any two of

the M modes of squeezed light followed by M photon number resolving detectors to detect

how many photons are in each mode after the photons pass through the interferometer. The

squeezers take in a vacuum state and produce photons whose quantum state is a superposition

of even photon Fock states. For example the state of photons in each mode before entering

the interferometer is written as

Ŝ(ri) |0⟩ =
1√

cosh ri

∞∑
n=0

(tanh ri)
n

√
(2n)!

2nn!
|2n⟩ . (19)

Where ri is the squeezing parameter of the ith squeezer and n is the photon number. In

terms of the annihilation and creation operators, ai and a
†
i , on the ith mode the squeezing
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operator can be written as

S(ri) = exp
[ri
2
(a†2i − a2i )

]
. (20)

The only difference introduced with Gaussian boson sampling as opposed to normal boson

sampling is the replacement of the single photon sources with single-mode squeezers. However

now that the photons are in a superposition of even photon number Fock states the number

of photons being sent into the interferometer is no longer constant. In fact the number of

photons in the ith mode can be any 2n ∈ N with probability

p(2n) =

∣∣∣∣∣(tanh ri)n√
cosh ri

√
(2n)!

2nn!

∣∣∣∣∣
2

(21)

This function decreases very quickly with n so very high photon counts are less likely. Given

this it would be more appropriate to talk of an average photon number, n̄, being sent into

the interferometer. However in practice we can simply post-select samples that have the the

total photon number, n, that we want to send into the device. The probability of measuring

a specific photon pattern with a GBS is now characterized by the Hafnian as opposed to the

permanent of a matrix

p(n) =
1√

det(Q)

Haf(An)

n!
(22)

where

Q = Σ+ I2M/2, A = X(I2M −Q−1), X =

[
0 IM
IM 0

]
. (23)

Here Σ is the 2M × 2M covariance matrix that fully describes the Gaussian state. An is

related to A, the 2M × 2M symmetric matrix, via the following relationship: An is obtained

by repeating rows and columns i and i +M according to the measurement pattern n. If

ni = 0 rows and columns i and i+M are deleted from A but if ni > 0 then rows and columns

i and i+M are repeated ni times. For example the probability of detecting the event where

each mode has exactly one photon n = (1, 1, ..., 1) would be proportional to the Hafnian of

the original matrix A since An = A.

2 GBS for Graph Isomorphism

2.1 Encoding a Graph into a GBS

To conduct the isomorphism test it is first necessary to encode the two graphs into GBS

devices. This can be done by mapping the adjacency matrix of the graph A to the symmetric,

positive definite 2M×2M covariance matrix of a Gaussian state ofM modes. First a doubled
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Figure 7: Diagram of an example of a 3-mode Gaussian boson sampler. Each mode starts in the
vacuum state |0⟩ before having squeezer Ŝ(ri) applied to it and then passed through the network of
beamsplitters (the interferometer).

adjacency matrix is constructed,

Ã = c

[
A 0

0 A

]
= c(A⊕ A), (24)

where c is a rescaling constant chosen such that 0 < c < 1/λmax where λmax is the maximum

singular value of A [5]. Ã can now be used to determine the parameters of the quantum gates

that compose the interferometer by first taking the Takagi-Autonne decomposition to obtain

Ã = Udiag(λ1, ..., λM)UT , (25)

where U is the unitary matrix that characterizes the interferometer and the λ’s are the

matrix’s eigenvalues and uniquely determine the squeezing parameters ri of the squeezers via

the relationship tanh(ri) = λi [14]. The eigenvalues uniquely determine the mean photon

number n̄ of the distribution as well according to

n̄ =
M∑
i=1

λ2i
1− λ2i

. (26)

U can be further decomposed to give the parameters of the beamsplitter and rotation gates

of the interferometer [15]. It is also worth noting that by using the identity Haf(Ã) =

Haf(A⊕ A) = Haf2(A) we can write the original formula for p(n) as

p(n) =
1√

det(Q)

Haf(Ãn)

n!
=

1√
det(Q)

|Haf(An)|2

n!
. (27)

17



2.2 Testing for Isomorphism Between Graphs

Once a graph is encoded into the M -mode GBS apparatus we can send a certain number of

photons, n, through it and and obtain a measurement outcome of the form (n1, n2, n3, ..., nM)

where ni is the number of photons detected by the ith detector. For boson sampling with

no photon loss n is also the sum of all photons detected by the PNRDs at the end of the

interferometer. This means that for a given measurement outcome for example for a 4-mode

interferometer (n1, n2, n3, n4), where we have M = 4, we have
∑4

i=1 ni = n. And in general

we have
∑M

i=1 ni = n where M is the the number of modes of the interferometer. The im-

portant property of the GBS for the quantum graph isomorphism algorithm is its probability

distribution. The probability distribution of a GBS consists of the possible measurement

outcomes n and their probabilities p(n). The measurement outcome n of a boson sampler

can be thought of as a M -dimensional random vector X = (X1, X2, ..., XM) with the Xi’s

being multinomial random variables since a PNRD measurement ni can result in an outcome

from the set {0, 1, 2, ..., n}. The boson sampler thus returns samples from the multivariate

normal distribution of the random vector X ∼ NM(µ, σ) where the covariance matrix of the

distribution σ corresponds to the the doubled adjacency matrix Ã and the mean vector is

related to the displacement vector d by µ = Q−1d†, where Q = Σ+I2M/2. In [6] it was shown

that the output probability distribution from GBS is a graph invariant up to a permutation.

This means that if two isomorphic graphs are encoded into a GBS their output probability

distributions of photon events will be equivalent up to a permutation. Thus it is possible to

show 2 graphs are not isomorphic by sampling from their GBS devices and comparing the

resulting probability distributions to see if they are permutations of one another which can

be done in O(D2) time where D is the number of elements in the distribution.

2.3 Analysis of Complexity

A crucial question to answer for the complexity analysis of this algorithm is how many times

one has to sample from a given probability distribution until the sample distribution begins

to approximate the sampled distribution within a given error range. In [16] the following

theorem was presented:

Theorem 1. Let D be a probability distribution over the sample space Ω = {1, 2, ..., D} and

D′ the empirical probability distribution obtained from sampling. For a given ϵ > 0 and δ > 0,

S =

⌈
2(ln(2)D + ln(1

δ
))

ϵ2

⌉
. (28)

samples are needed to ensure that p(||D − D′||1 ≥ ϵ) ≤ δ. Where ||D − D′||1 is the L1 norm
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or distance.

In other words the number of samples S needed to approximate a probability distribution

(the sampled distribution) with D outcomes or more precisely D elements in its sample space,

with probability of at most δ that the sum of the absolute values of the errors on the empirical

probability distribution (the sample distribution) is ϵ or greater is

S =

⌈
2(ln(2)D + ln(1

δ
))

ϵ2

⌉
. (29)

This shows the number of samples needed to accurately approximate the distribution scales

linearly with the number of elements in the sample space (for constant δ and ϵ). Therefore

it is important to analyze how the number of outcomes of the boson sampler, which is also

the number of elements in the sample space which we denote as |Ω|, grows as we increase the
size of the graphs and thus the size of the interferometer (the number of modes M).

Theorem 2. The size |Ω| of the sample space Ω of a M-mode boson sampler with n photons as

inputs grows at least exponentially with the number of modes under the three approximations:

1. The number photons scales quadratically with the number of photons: n ∈ Θ(M2)

2. The number modes scales quadratically with the number of photons: M ∈ Θ(n2)

3. The number photons scales linearly with the number of modes: n ∈ Θ(M)

The number of outcomes for a 4-mode interferometer is equal to the number of ways one

can write n1 + n2 + n3 + n4 = n where the order of the summands matters. In mathematics

this is called the number of weak compositions of the integer n into M parts and it is equal

to

|Ω| =
(
n+M − 1

n

)
=

(n+M − 1)!

n!(M − 1)!
. (30)

First we will show that under the approximation that the number of photons is quadratic

in the number of modes, n ∈ Θ(M2), this function is in ω(2M) and thus grows more than

exponentially with M . While n is an important variable for the isomorphism algorithm’s

complexity we chose to analyze growth with M as it determines the size of the graph.

Lemma 1. (n+M−1)!
n!(M−1)!

∈ ω(2M) for n =M2

Proof.

lim
M→∞

(n+M−1)!
n!(M−1)!

2M
n=M2

−−−→ lim
M→∞

(M2 +M − 1)!

(M2)!(M − 1)!2M
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Using the identity from appendix A:

= lim
M→∞

1

2M
[
∏M−1

i=1 (M2 + i)](M2)!

(M2)!(M − 1)!
= lim

M→∞

1

2M

∏M−1
i=1 (M2 + i)

(M − 1)!

Since
∏M−1

i=1 (M2 + i) > (M2)M−1:

> lim
M→∞

1

2M
(M2)M−1

(M − 1)!

= lim
M→∞

M2M

2MM2(M − 1)!
= lim

M→∞

MMMM

2MM2(M − 1)!

= lim
M→∞

MM

2MM
· lim
M→∞

MM

M !
= ∞ ·∞ = ∞

Therefore limM→∞

(n+M−1)!
n!(M−1)!

2M
= ∞ and (n+M−1)!

n!(M−1)!
∈ ω(2M) for n =M2.

If we assume the reverse scalingM ∈ Θ(n2) then a similar conclusion can be reached. We

use ⌊
√
M⌋ as x! is only defined for integers.

Lemma 2. (n+M−1)!
n!(M−1)!

∈ ω(
√
M

√
M
) for n = ⌊

√
M⌋

Proof.

(n+M − 1)!

n!(M − 1)!

n=⌊
√
M⌋−−−−−→ (⌊

√
M⌋+M − 1)!

(⌊
√
M⌋)!(M − 1)!

=
[
∏⌊

√
M⌋

i=1 (M − 1 + i)](M − 1)!

[
∏⌊

√
M⌋

i=1 i](M − 1)!
=

[
∏⌊

√
M⌋

i=1 (M − 1 + i)]

[
∏⌊

√
M⌋

i=1 i]

=

⌊
√
M⌋∏

i=1

M − 1 + i

i
=

⌊
√
M⌋∏

i=1

[
M − 1

i
+ 1]

>

⌊
√
M⌋∏

i=1

[
M − 1

⌊
√
M⌋

+ 1]

= (
M − 1

⌊
√
M⌋

+ 1)⌊
√
M⌋ = (⌊

√
M⌋+ 1− 1

⌊
√
M⌋

)⌊
√
M⌋

≥ ⌊
√
M⌋⌊

√
M⌋

Therefore (n+M−1)!
n!(M−1)!

∈ ω(
√
M

√
M
) for n = ⌊

√
M⌋. We drop the floor function for simplicity as

⌊x⌋ ∈ Θ(x) as shown in appendix B.

For linear scaling, n ∈ Θ(M), the following lower bound can also be established.

Lemma 3.
(
n+M−1

n

)
∈ ω((2− 1

M
)M) for n =M
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Proof.

(n+M − 1)!

n!(M − 1)!

n=M−−−→ (M +M − 1)!

M !(M − 1)!

=
[
∏M

i=1(M − 1 + i)](M − 1)!

[
∏M

i=1 i](M − 1)!

=
[
∏M

i=1(M − 1 + i)]

[
∏M

i=1 i]

=
M∏
i=1

M − 1 + i

i
=

M∏
i=1

[
M − 1

i
+ 1]

Since M ! < MM :

>
M∏
i=1

[
M − 1

M
+ 1]

= (
M − 1

M
+ 1)M = (2− 1

M
)M

Therefore (n+M−1)!
n!(M−1)!

∈ ω((2− 1
M
)M) for n =M .

Proof of Theorem 2. The proof follows directly from Lemmas 1, 2 and 3.

Since the number of possible outcomes for a boson sampler increases exponentially with

the number of modes M as does the cardinality of its sample space and it follows that the

number of samples needed to sufficiently approximate its output probability distribution also

grows exponentially with the number of modes and thus also exponentially with the number

of vertices of the graph. Therefore testing for isomorphism between two graphs would require

sampling exponentially many times from the GBS devices making the test intractable.

A method was suggested in [6] to coarse-grain the probability distributions by combining

outcomes into groups called orbits. Coarse-graining in this sense means to reduce the size of

the sample space via this grouping thereby requiring us to take less samples to approximate

the new probability distribution. However it is important to keep in mind that this comes

with two downsides: i) the new distribution could potentially be simple enough to be sampled

from classically, thereby eliminating the quantum advantage, and ii) the new distribution

having less information and distinguishing power in terms of differentiating graphs based

on isomorphism. Even with these downsides coarse-graining strategies are still useful to

investigate in the case that the new distribution could still decide isomorphism in which case

it doesn’t matter if it can be efficiently sampled from classically as we would still have an

efficient algorithm that solves the GraphIsomorphism problem. It is shown in [6] that

orbit probabilities are enough to distinguish non-isomorphic isospectral graphs. An orbit On
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Figure 8: Idea behind coarse-graining the sample space. The sample space Ω could be of very large
cardinality which would make approximating it’s probability distribution via sampling prohibitively
expensive. However if we group the elements of Ω in such a way that partitions the sample space
into disjoint subsets we get a new probability distribution over the subsets (E1, E2, E3, & E4 in this
case) which is less expensive to approximate and contains relevant information about the original
distribution.

consists of a detection event n and all of its permutations. For example the orbit that contains

the detection event n = (1, 2, 2) also contains the detection events (2, 1, 2) and (2, 2, 1). The

number of orbits for a 4-mode interferometer is equal to the number of ways one can write

n1 + n2 + n3 + n4 = n, where the order of the summands does not matter. In mathematics

this is called the number of integer partitions of the integer n into M parts and from the

number theory literature [17] it has the upper bound

|Ω| ≤ 5.44

n−M
eπ

√
2(n−M)

3 , 1 ≤M ≤ n− 1. (31)

The cardinality of each orbit is the familiar combinatorial expression for the number of

permutations of a set of M elements which can repeat

|On| =
M !

g1g2 · · · gM
(32)

where gi is the number of times the ith element repeats. This coarse-graining method parti-

tions the sample space of a boson sampler for a given M and n into disjoint subsets. What

is important to analyze now is how many subsets there are for a given M and n as that will

determine how many times we must sample from the boson sampler. If we use the approx-

imation of n ∈ Θ(M) with n ≈ 2M we have the following upper bound on the number of

orbits
5.44

M
eπ
√

2M
3 ∈ O(

eπ
√

2M
3

M
). (33)
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Figure 9: Diagram of the βn
s feature map. The graph is converted to an adjacency matrix then

encoded into the GBS device. Afterwards the device is used to generate s samples which will be used
to create the feature vector. Entries of the feature vector are the probabilities that the corresponding
detector detects no photons.

Since this implies the number of orbits is in O(eo(M)) it is only sub-exponential in M so the

orbits method only provides a moderate coarse-graining of the sample space. Lastly in [5, 18]

a second coarse-graining strategy was presented that builds off the previous one and groups

orbits into meta-orbits. A meta-orbit is characterized by a total photon number n, and ∆s

which is defined as

∆s = {n :
∑
i

ni = n ∧ ∀i : ni ≤ s }. (34)

Therefore a meta-orbit consists of all outcomes where total photon number is equal to n, where

no detector counts more than s photons. This strategy in combination with the previous one

coarse-grains the orbits. One can analyze how much this coarse-grains the orbits again by

analyzing its mathematical analog which in this case is the number of integer partition of n

with at most M parts each of which is less than or equal to s and its generating function

which is a Gaussian binomial coefficient is presented in [18]

M(M, s) =

(
s+M

M

)
x

=
M∏
j=1

1− xs+M+1−j

1− xj
. (35)

The number of such partitions for a given M and s is given by the coefficient of xn of the

above Gaussian binomial coefficient expanded around x = 0. In [18] it is claimed, although

not proven explicitly, that this coarse-graining strategy partitions all orbits into a polynomial

number of subsets in n. The important caveat with this method is that the subsets are only

polynomial if we have n as constant.
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3 GBS for Graph Classification

In the following section as in the previous ones we will define the sample complexity of an

algorithm by how many times it requires us to sample from the GBS. We will define space

complexity in terms of the length or number of dimensions of the feature vectors constructed

by a feature map.

3.1 Classical Graph Kernels

Three classical graph kernels were used as a benchmark for the GBS feature maps. The

subgraph matching kernel (SM) with time complexity O(kNk+1) where N is the number of

vertices and k the size of the subgraphs being considered [19], the graphlet sampling kernel

(GS) with worst case time complexity O(Nk) which can be optimized to O(Ndk−1) for graphs

of bounded degree with the restriction that k ∈ {3, 4, 5}, where k is the graphlet size and

d is the maximum degree of the graph [16], and the random walk kernel (RW) with time

complexity O(N3) [20]. The accuracies of all three classical kernels from [5] are shown in

table 3.

3.2 The Current GBS Feature Maps

3.2.1 The Xanadu Feature Map

The proposed GBS feature map in [5] maps a graph G, which is encoded into a GBS, to a

feature vector φ : G → f = (f1, f2, ..., fD) ∈ RD. The entries fi of f consists of the detection

probabilities of either orbits or meta-orbits

fi = p(Oi
n), or fi = p(Mi

n,∆s
) (36)

where the probability of an orbit On or meta-orbit Mn,∆s is simply the sum of the probability

of the detection events in that orbit or event respectively. We will call these the α and α+

maps where α is the feature map with respect to orbits and α+ is the feature map with

respect to meta-orbits. This feature map was shown to outperform some classical graph

kernels such as the graphlet sampling, random walk, and subgraph matching kernels when

classifying graphs from graph data sets commonly used to benchmark new graph kernels

such as MUTAG. This was demonstrated using classical simulations of GBS with PNRDs.

However as shown earlier the number of orbits, and thus the size of the sample space, grows

sub-exponentially with the number of vertices of a graph and therefore even with a scalable

fault tolerant quantum computer, which is many years away from development, would require
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at least sub-exponential amounts of sampling to accurately approximate the probabilities of

the orbits that make up the entries of the feature vector. Current day PNRDs can measure

about 105 samples per second [5], using equation 29 with δ = 0.05, ϵ = 0.05, D ≈ e
√
M and

assuming GBS with no photon loss we must sample about 1.22×107 times forM = 100 modes.

The current day detectors can accomplish this in about 122 seconds. One might argue that

this means the method could be tractable for graphs on the order of ∼100 vertices. However

the other drawback for the scalability of these feature vectors is their length. Since the length

of the feature vector is directly proportional to the number of orbits this means the length of

the feature vectors also grows sub-exponentially with the number of graph vertices and thus

would result in a space complexity of O(e
√
M).

3.2.2 GBS Feature Map with Linear Space Complexity

We define the feature map to be: φ : G→ f = (f1, f2, ..., fM) ∈ RM . Where the entries of the

feature vector fi correspond to the probability that the ith detector detects no photons. We

call this the βn
s map. Where n denotes how many photons the simulation was run with and

s denotes how many times we sampled from the simulated GBS. The length of these feature

vectors scales linearly with the number of modes of the boson sampler and thus linearly with

the number of vertices of the graphs.

Table 1: Graph data set statistics before and after prepossessing. Numbers on the left side of
the colon indicate value before preprocessing. More detailed descriptions of these data sets can be
found in appendix B of [5].

Data set # of graphs # of classes avg. # of vertices avg. # of edges

MUTAG 188 : 123 2 : 2 17.93 : 17.93 19.79 : 19.79
PTC FM 349 : 284 2 : 2 14.11 : 14.11 14.48 : 14.48
ENZYMES 600 : 217 6 : 6 32.63 : 31.85 62.14 : 61.09
PROTEINS 1113 : 534 2 : 2 39.06 : 37.39 72.82 : 69.29
ER MD 446 : 357 2 : 2 21.33 : 21.32 234.85 : 234.84

COX2 MD 303 : 118 2 : 2 26.28 : 26.27 335.12 : 335.12
IMDB BINARY 1000 : 806 2 : 2 19.77 : 19.77 96.53 : 96.53

BZRD MD 306 : 257 2 : 2 21.30 : 21.30 225.06 : 225.05

3.2.3 Numerical Simulation

Due to the lack of sufficiently fault tolerant quantum hardware we resort to simulating GBS

classically. We use threshold detectors as opposed to PNRDs in our simulation of the GBS

when sampling to save significant time on computation. This still retains the quantum
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advantage as the probability of a detection outcome n = (n1, n2, ..., nM) for Gaussian boson

sampling with threshold detectors is given by

p(n) =
Tor(On)√
det(Σ)

(37)

where

On = I− (Σ−1)n, (38)

Tor(A) =
∑

Z∈P ([n])

(−1)|Z| 1√
det(I− AZ)

(39)

and Tor() is the Torontonian of a matrix A ∈ C2n×2n. Σ is the covariance matrix of the

complex amplitude α. P ([n]) is the power set, the set of all possible subsets, of the set

[n] = {1, 2, ..., n}. Since the calculation requires summing over the elements in the power set,

which has cardinality of 2n, it also requires the calculation of 2n determinants. Given that the

fastest determinant algorithms have complexity O(n3) for n×n matrices it is easy to see the

complexity of calculating the Torontonian is O(n32n) which is the same as the complexity of

the fastest Hafnian algorithms [21] thus making it as hard as GBS with PNRDs to classically

simulate.

3.2.4 Preprocessing of Data Sets

To make our results more comparable to [5] we decided to only use graphs from each data set

that have fewer than 26 and more than 5 vertices. We then follow the convention in [22] and

remove isolated vertices from each graph and extracted the largest connected component of

the graph if the graph wasn’t fully connected. Next, as was done in [23], for each data set

we pad the adjacency matrix of all graphs with zeros on the bottom and right sides to make

all adjacency matrices the same dimensions as the largest matrix in the filtered data set. For

each data set this meant padding each matrix to make its dimensions 25×25. We fetched the

data-sets using Python’s GraKel library and prepossessed them using the NetworkX library

[24, 25].

3.2.5 Model Selection

We test our classification method on 8 of the 11 data sets used in [5] which are shown in

table 1. We use a SVM with an rbf kernel and random forest classifier as our two supervised

machine learning classifiers with the GBS generated feature vectors as our input set along

with the class label set from the data set as their input. We obtain the accuracies by running a

nested 10-fold cross-validation for the SVM and nested 5-fold cross-validation for the random
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Table 2: Test accuracies of the βn
s is the feature map whose feature vector entries are the proba-

bilities of the detectors detecting no photons. SVM and RF indicate the accuracies of classification
using the SVM and random forest classifiers respectively.

Data set β5
500 SVM β5

500 RF β4
500 SVM β4

500 RF β3
1000 SVM β3

1000 RF

MUTAG 79.93 82.14 79.93 82.14 79.93 82.66
PTC FM 63.74 63.05 64.43 54.21 63.71 59.86
ENZYMES 30.45 32.68 33.18 35.94 31.36 35.95
PROTEINS 65.34 68.14 67.78 67.59 66.11 67.96
ER MD 65.57 66.12 65.55 65.28 66.42 68.65

COX2 MD 53.41 47.35 53.40 45.79 52.57 45.79
IMDB BINARY 60.68 63.52 59.93 62.03 59.18 59.55

BZRD MD 62.96 60.70 63.00 58.75 63.36 59.51

Table 3: Test accuracies of different features maps on benchmark data sets. α and α+ are the
Xanadu feature map with 0 displacement whose feature vector dimensions are orbit and meta-orbit
probabilities respectively. The accuracies for the three classical graph kernels used for comparison,
the graphlet sampling (GS), random walk (RW), and subgraph matching (SM) kernels are also
shown. *Runtime > 20 days

Data set α α+ GS RW SM

MUTAG 86.41 85.64 81.08 83.02 83.14
PTC FM 53.84 59.14 59.48 51.97 54.92
ENZYMES 22.29 25.72 35.87 21.13 36.70
PROTEINS 66.88 65.73 65.91 56.27 63.03
ER MD 70.36 71.01 65.65 68.75 68.21

COX2 MD 44.98 57.84 55.04 57.72 66.94
IMDB BINARY 64.09 68.14 68.37 66.38 out of time*

BZRD MD 62.73 62.01 60.60 49.88 61.90

forest classifier. For the SVM the inner 10-fold cross-validation finds the best value for the

C hyper-parameter of the SVM, which controls the penalty on misclassifications, through

a grid search between the values [0.1, 40] with a step size of 0.1. The model with best

performance is then used in the outer 10-fold cross-validation loop to get the accuracies on

the test set. The same method is used for the random forest classifier except with 5-fold as

opposed to 10-fold cross-validation. The relevant hyper-parameters used in the grid search

for the random forest classifier were maximum depth of the trees and the number of trees

with [1, 10, 50, 100, 250, 750, 1000] being the range of values used in the grid search for both

parameters. The results of the α and βn
s feature maps are shown in table 3 and 2 respectively.
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3.2.6 Sample Complexity

The sample space of the distribution we are sampling from to create the βn
s feature vectors

is the set of all possible detection events of the M -mode thresholded GBS. Therefore it is

important to analyze the size of the sample space of the GBS with threshold detectors as

that will determine how many times we must sample from the device. First let us examine

the limiting cases that n = 1 and n = M , clearly the number of outcomes is in O(M) and

O(2M) respectively. Since the ni’s for threshold detectors can be either 0 or 1 we can think

of the detection outcomes as binary strings of length M with at most n ones. The number

of binary strings of length M with exactly n ones is
(
M
n

)
. So the cardinality of the sample

space, the number of binary strings of length M with at most n ones, is given by

|Ω| =
n∑

i=0

(
M

i

)
(40)

If we assume n grows linearly withM , n =M , we can show this function grows like 2M using

the binomial expansion

2M = (1 + 1)M =
M∑
i=0

(
M

i

)
1M−i1i =

M∑
i=0

(
M

i

)
(41)

In practice we can usually have n ≤M so using the the approximation n ≈ ⌊
√
M⌋ we have

|Ω| =
⌊
√
M⌋∑

i=0

(
M

i

)
<

M∑
i=0

(
M

i

)
= 2M (42)

which means the function is in o(2M) meaning it grows strictly less than 2M . However we

can also show that under the same scaling approximation the function is in ω(2⌊
√
M⌋),

2⌊
√
M⌋ = (1 + 1)⌊

√
M⌋ =

⌊
√
M⌋∑

i=0

(
⌊
√
M⌋
i

)
<

⌊
√
M⌋∑

i=0

(
M

i

)
. (43)

Therefore the sample complexity of this feature map is somewhere between exponential and

sub-exponential in M .

3.3 GBS Feature Map with Linear Space & Sample Complexity

While the results from the βn
s feature map are promising we would still like to reduce the

sample complexity to be polynomial in the graph size as opposed to sub-exponential. To
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this end we decide to coarse-grain the sample space of the thresholded GBS by grouping

together detection events with exactly ñ ones, where ñ ∈ (1, ..., n). We call these groups

binary orbits. For example for a 4-mode boson sampler the detection events (1, 1, 0, 1) and

(0, 1, 1, 1) belong to the same binary orbit since they both have exactly 3 detector ’clicks’

or ones. This would partition the set of all events in the sample space into a linear number

of disjoint subsets in n. The new feature map, which we call the γns map, would then be

φ : G → f = (f1, f2, ..., fM) ∈ RM where the entries fi would correspond to the probability

of detecting a event with exactly i ones or ’clicks’. Since the number of elements in the new

coarse-grained sample space is polynomial in the number of photons, which we can tune to

grow linearly or sub-linearly with the number of modes of the GBS, we would only have to

sample a polynomial number of times from the boson sampler to construct a feature vector

for a graph of M vertices. The results of the γns feature map are shown in table 4. We can

see that for most data sets the γns map is competitive with the classical kernels.

Table 4: Table for the accuracies of the γns map. Where s is the number of times each graph
was sampled from after being encoded into the GBS and n is the number of photons sent into the
GBS. Columns with RF and SVM denote accuracies with the random forest classifier and SVM
respectively.

Data set
γ3100
SVM

γ3100
RF

γ4100
SVM

γ4100
RF

γ5100
SVM

γ5100
RF

γ8100
SVM

γ8100
RF

MUTAG 67.61 65.34 70.88 61.42 68.17 75.45 80.49 76.53
PTC FM 61.28 52.46 60.94 57.37 60.24 50.70 61.60 53.52
ENZYMES 15.12 21.19 21.19 20.30 14.28 18.91 16.51 17.10
PROTEINS 59.72 61.41 62.71 61.96 64.25 64.23 64.95 64.96
ER MD 60.79 52.95 66.40 58.55 64.41 62.73 64.67 64.45
COX2 MD 43.18 51.55 58.40 56.08 45.00 51.48 38.10 48.29
IMDB BINARY 60.91 61.91 62.28 59.55 62.64 62.40 65.61 66.25
BZRD MD 50.92 57.18 47.06 46.72 54.00 54.17 62.70 59.53

4 Summary and Open Problems

In this work we analyze the time and sample complexity of a GBS based quantum algo-

rithm for the GraphIsomorphism problem. We found that the algorithm would require

ω(
√
M

√
M
) sample complexity in the worst case and O(e

√
M) sample complexity in the best

case, whereM are the number of vertices in the graph. The time complexity of the GraphI-

somorphism algorithm would be O(M2.8) as encoding the graph into a GBS device requires

the multiplication and inversion of a 2M × 2M matrix and the fastest known algorithm for

matrix multiplication is Strassen’s algorithm with complexity O(n2.8). We also analyze the
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time, space and sample complexity of the GBS based feature maps introduced in [5] and

[23] for the machine learning task of graph classification. We find that they both have time

complexity O(M2.8) as they both require matrix multiplication to encode the graphs into a

GBS. In the case of the feature map in [23] the space complexity is O(M) but the sample

complexity is ω(2
√
M). The two feature maps introduce in [5] are the α and α+ feature maps.

In the case of the α feature map both the sample and space complexity are O(e
√
M). In

the case of the α+ feature map the sample and space complexity are O(M) if the photon

number, n, is constant [18]. We then propose a feature map for graphs of M vertices with

sample complexity that is O(n), i.e., linear in the number of photons, n, sent into the GBS,

time complexity that is O(M2.8), i.e, sub-cubic in the number of modes and space complexity

that is O(M), i.e., linear in the number of modes M of the GBS. We can tune the number

of photons to scale linearly or sub-linearly with the number of modes of the device so the

sample complexity is also linear in the number of modes of the GBS which is also the number

of vertices of the graph. This is an improvement over the graphlet sampling (for non-constant

graphlet size k), random walk, and subgraph matching kernels which were the classical graph

kernels used to benchmark the performance of the GBS feature map in [5]. What is most

interesting is that the γns feature map gives us comparable results to the α+ feature map but

the γns map used threshold detectors instead of PNRDs. Thus we have a scalable and more

simple quantum graph kernel that is competitive with the current state-of-the-art classical

graph kernels. A number of questions remain open for investigation such as:

1. To create the α, α+, and γns feature vectors we must sample from a coarse-grained

version of the probability distribution of GBS detection patterns. In the case of the α

map we coarse-grain the sample space into orbits, meta-orbits for α+ and binary orbits

for γns . But are any of these probability distributions classically easy to sample from?

If they are then the quantum advantage is lost. However in the case of γns we would still

have a new graph kernel that is competitive with the current classical graph kernels. If

they aren’t easy to sample from classically then we retain the quantum advantage.

2. Would adding a uniform displacement to all the modes of the GBS have a drastic

increase in the accuracy of the feature map, particularly in the case of the ENZYMES

data set, as it did in [5]?

3. How low can we keep the photon number while still getting good accuracies? Could

we get good accuracies if we have the number of photons scale sub-linearly with the

number of vertices say scaling as log(M) or
√
M?

4. Can the γns feature map consistently outperform the classical graph kernels when run

with larger values of n?
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5. In this paper we consider only a lossless GBS. How does photon loss in the interferometer

impact the accuracies?

6. Could some insight be gained from doing a principal component analysis on the feature

vectors from the γns map? Such as which binary orbit probabilities explain the most

variance in the data?
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Appendices

A Factorial Identity

Lemma 4. (n+ c)! = [
∏c

i=1(n+ i)]n! for c ≥ 0

Proof. Clearly

(n+ 2)! = (n+ 2)(n+ 1)(n)! =
[ 2∏
i=1

(n+ i)
]
n!

And in general from the definition of n!:

(n+ c)! =
[ c∏
i=1

(n+ i)
]
n!
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B Tight Bounds for ⌊x⌋ and ⌈x⌉

Lemma 5. ⌊x⌋ ∈ Θ(x)

Proof.

⌊x⌋ ≤ cx for c = 1 & x > 2

∴ ⌊x⌋ ∈ O(x)

⌊x⌋ ≥ cx for c =
1

2
& x > 2

∴ ⌊x⌋ ∈ Ω(x)

∴ ⌊x⌋ ∈ Ω(x) ∩ O(x) = Θ(x)

Lemma 6. ⌈x⌉ ∈ Θ(x)

Proof.

⌈x⌉ ≤ cx for c = 2 & x > 2

∴ ⌈x⌉ ∈ O(x)

⌈x⌉ ≥ cx for c = 1 & x > 2

∴ ⌈x⌉ ∈ Ω(x)

∴ ⌈x⌉ ∈ Ω(x) ∩ O(x) = Θ(x)

C Computational Complexity Theory

C.1 Basic Theory & Notation

In computer science the Turing machine is the universal model of computation that is as

powerful as all other classical models of computation. It consists of a head that reads in an

infinite tape that is divided into cells as input. The head reads the symbol on each cell in the

tape and after reading a symbol transitions into a different state based on some transition

function δ : Q×Γ → Q×Γ×{L,R}. Where Q is the set of possible states of the machine, Γ

is the tape alphabet and L and R indicate whether the head moves to the left or the right cell

of the current one. A non-deterministic Turing machine has a transition function of the form
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Figure 10: Diagram of the polynomial hierarchy PH. The arrows indicate that the class is contained
in the class pointed to.

δ : Q× Γ → P(Q× Γ× {L,R}). This means that for each cell the head reads the transition

function can allow the machine to transition into more than one state depending on which

of the possible states will lead to an accepting state. A probabilistic Turing machine has

two transition functions δ0 and δ1 and at each step of its execution applies either transition

function with probability 1
2
.

C.2 Complexity Classes

Computational problems such as the ones we will discuss later are classified by being placed

in certain complexity classes. The most well known of these complexity classes is P, which

is the class of decision problems solvable by a deterministic Turing machine in polynomial

time, and NP which is the class of decision problems solvable by a non-deterministic Turing

machine in polynomial time or equivalently the class of decision problems whose solutions can

be verified in polynomial time by a deterministic Turing machine. A decision problem is NP-

hard if there is a polynomial time way to map an instance of any problem in the complexity

class NP to an instance of that problem. A decision problem is NP-complete if it’s both

NP-hard and in the class NP. For a computational problem an oracle O is a black box that

returns a solution for any instance of that problem. Complexity classes can be defined with

respect to an oracle as well. For a complexity class an oracle can return a solution for any
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instance of a problem in that class. For example a problem is in the complexity class PNP

if it can be solved by a deterministic Turing machine which has access to an oracle for a

NP-complete problem. The polynomial hierarchy PH, depicted in figure 10, is a multi-leveled

tower of complexity classes. It is inductively defined through the use of oracles where level 1

is P, level 2 contains NP, level 3 contains NPNP, and so on. Mathematically it can be written

as

Initialize P = ΠP
0 = ΣP

0 = ∆P
0 . Define: (44)

ΠP
i+1 = coNPΣP

i (45)

ΣP
i+1 = NPΣP

i (46)

∆P
i+1 = PΣP

i (47)

PH =
∞⋃
i=0

ΠP
i ∪ ΣP

i ∪∆P
i . (48)

Each level is contained in the level above it and if two adjacent levels i and i+1 are equal then

they are equal to all the above levels. This is what is called the collapse of the polynomial

hierarchy to the ith level. It is widely believed that the polynomial hierarchy does not

collapse to any level. In fact showing that a conjecture would imply the collapse of PH is

a common way of giving evidence for the conjecture’s unlikeliness. This is also why the

question of if P = NP is important, because it would imply a collapse of PH to the first level

which would mean that all problems in PH are solvable in polynomial time by a deterministic

Turing machine. The complexity class of interest for the sampling problem relevant later

is #P, which is the set of counting problems that count how many solutions there are to a

corresponding problem in NP. Its equivalent complexity class of decision problems is P#P

which is the class of decision problems solvable in polynomial time by a deterministic Turing

machine with access to an oracle for a #P-complete problem. From Toda’s theorem we

have PH ⊂ P#P or equivalently #P problems are as hard as any problems in the polynomial

hierarchy. Lastly BPP is the class of decision problems solvable in polynomial time by a

probabilistic Turing machine with an error probability of 1
3
. [26, 27]. BPP is contained in the

second level of PH and BPPNP in the third level [28].
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