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Abstract

We study the computational difficulty of computing the ground state degeneracy and the
density of states for local Hamiltonians. We show that the difficulty of both problems is exactly
captured by a class which we call #BQP, which is the counting version of the quantum com-
plexity class QMA. We show that #BQP is not harder than its classical counting counterpart
#P, which in turn implies that computing the ground state degeneracy or density of states for
classical Hamiltonians is just as hard as it is for quantum Hamiltonians.

1 Introduction

Understanding the physical properties of correlated quantum many-body systems is a problem of
central importance in condensed matter physics. The density of states, defined as the number of
energy eigenstates per energy interval, plays a particularly crucial role in this endeavor. It is a
key ingredient when deriving many thermodynamic properties from microscopic models, including
specific heat capacity, thermal conductivity, band structure, and (near the Fermi energy) most
electronic properties of metals. Computing the density of states can be a daunting task however, as
it in principle involves diagonalizing a Hamiltonian acting on an exponentially large space, though
other more efficient approaches which might take advantage of the structure of a given problem are
not a priori ruled out.

In this work, we precisely quantify the difficulty of computing the density of states by using the
powerful tools of quantum complexity theory. Quantum complexity aims at generalizing the well-
established field of classical complexity theory to assess the difficulty of tasks related to quantum
mechanical problems, concerning both the classical difficulty of simulating quantum systems as well
as the fundamental limits to the power of quantum computers. In particular, quantum complexity
theory has managed to explain the difficulty of computing ground state properties of quantum
spin systems in various settings, such as two-dimensional lattices [12] and even one-dimensional
chains [3], as well as fermionic systems [13].

We will characterize the computational complexity of two problems: the density of states for a
local Hamiltonian, and counting the ground state degeneracy of a local gapped Hamiltonian. To do
so, we will introduce the quantum counting class #BQP. This class constitutes the natural counting
extension to the class QMA, and the natural “quantum version” of the counting function class #P.
Vaguely speaking, #BQP counts the number of possible “quantum solutions” to a problem that
can be verified, but not necessarily solved, efficiently using a quantum computer.

Our first major result is that both problems, computing the density of states and counting the
ground state degeneracy, are complete problems for the class #BQP, i.e., they are equivalent to
the hardest problems in this class. After characterizing the complexity of the density of states
and ground state solutions problems, we move to relating #BQP to well-known classical counting
classes. Using a weakly parsimonious reduction, we show that #BQP is equal to its classical
counterpart #P. As functions in #P are thought to be difficult to compute classically, this gives
an exact characterization of why computing the density of states and finding the ground state
degeneracy of a local Hamiltonian are so difficult.
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2 Quantum Complexity Classes

To fix notation, we first review the relevant complexity classes. We begin with QMA, the natural
quantum version of the class NP. The verifier V verifies an n-qubit quantum state serving as a
“quantum solution,” or proof, analogous to the n-bit classical proof verified in the class NP. The
verifier consists of a length-T (T ∈ poly(n)) quantum circuit U = UT · · ·U1 (with local gates Ut)
acting on m ∈ poly(n) qubits, which takes the n-qubit quantum state |ψ〉I as an input, together
with m − n initialized ancillas, |0〉A ≡ |0 · · · 0〉A, applies U , and finally measures the first qubit
in the {|0〉1, |1〉1} basis to return 1 (“proof accepted”) or 0 (“proof rejected”). The acceptance
probability for a proof |ψ〉 is then given by pacc(V (ψ)) := 〈ψ|Ω|ψ〉, with

Ω = (1I ⊗ 〈0|A)U †(|1〉〈1|1 ⊗ 1)U(1I ⊗ |0〉A) . (1)

Definition 1 (QMA). Let a, b satisfy a − b > 1
p(n) for some polynomial p(n). A language L is in

QMA(a,b) if there exists a quantum verifier circuit U such that

x ∈L⇒ ∃|ψ〉s.t. 〈ψ|Ω|ψ〉 > a

x /∈L⇒ ∀|ψ〉 〈ψ|Ω|ψ〉 < b .

The decision problem “determine whether a local Hamiltonian has a ground state with energy
less than a” is was the first known complete problem for this class. Thus, this definition of QMA
allows us to quantify the difficulty of computing the ground state energy, E0(H), of a local hamil-
tonian H up to 1/poly(n) accuracy via binary search and a single query to a black box solving
QMA problems [4].

The class NP has a natural counting version, known as #P [14],

Definition 2. A function problem f ∈ #P if and only if it is of the form “given a verifier machine
M for a problem in NP, compute the number of strings x of length q such that M(x) = 1”

Here, the task is to determine the number rather than the existence of satisfying inputs to the
verifier (solutions to the problem). In order to define #BQP, we now consider a modified version
of QMA. This class by itself holds no intrinsic interest for us and is merely a stepping stone to
defining #BQP.

Definition 3. Let a, b, c satisfy a− b > 1
p(n) and a− c > 1

p(n) for some polynomial p(n) and let |φ〉
be an eigenvector of Ω. A language L is in modified-QMA(a,b,c) if there exists a quantum verifier
circuit U such that

x ∈ L⇒∃|ψ〉 s.t. 〈ψ|Ω|ψ〉 > a

@|φ〉 s.t. c < 〈φ|Ω|φ〉 < a

x /∈ L⇒∀|ψ〉 〈ψ|Ω|ψ〉) < b

Of course, this additional promise that we impose on the spectrum of Ω is not present in the
original definition of QMA, however similarly restricted definitions of QMA are defined in [2, 8].
This promise gap arises naturally when considering the counting version of QMA: QMA captures
the difficulty of determining the existence of an input state with acceptance probability above a,
up to a grace interval of a − b in which mistakes are tolerated. Correspondingly, #BQP captures
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the difficulty of counting the number of (orthogonal) inputs with an acceptance probability above
a, again with a grace interval of a− b in which states are allowed to be miscounted. Similarly, the
Hamiltonian formulation of the problem which we will discuss below asks for the existence (QMA)
or number (#BQP) of states in a certain energy interval, where states which are in some small
1/poly(n) neighborhood of this interval may be miscounted.

The problem of distinguishing between states exponentially close to the threshold of acceptance
and those above the threshold of acceptance is a difficult and open problem that originally motivated
this modified definition in [2,8]. In our case, using the original unrestricted definition of QMA would
allow us to characterize the number of orthogonal inputs with acceptance probability above the
threshold to exponential accuracy.

Using modified-QMA, we define #BQP as its counting extension,

Definition 4. Given a verifier map, Ω, for a modified-QMA problem, the class #BQP consists of
all problems of the form “compute the dimension of the space spanned by all eigenvectors of Ω with
eigenvalues ≥ a”

Another definition for #BQP, cf. [2, 8] which will become useful is the following:

Definition 5. Consider a verifier Ω with the additional promise that there exist subspaces A ⊕
R = C2n such that 〈ψ|Ω|ψ〉 ≥ a for all |ψ〉 ∈ A, and 〈ψ|Ω|ψ〉 ≤ b for all |ψ〉 ∈ R, where
a− b > 1/poly(n)). Then #BQP consists of all problems of the form “compute dimA”.

In fact, these two definitions are equivalent.

Theorem 6. Equivalence of Definition 4 and Definition 5.

Proof. First we show Definition 5 is well defined up to the dimension of the subspaces. Consider
two decompositions C2n = A ⊕ R and C2n = A′ ⊕ R′. Without loss of generality, if we assume
dimA > dimA′, it follows dimA + dimR′ > 2n, and thus there exists a non-trivial |µ〉 ∈ A ∩ R′,
which contradicts the definition.

Now we show this is equivalent to our original definition in terms of the spectrum of Ω: To show
Def 4⇒Def 5, let A be spanned by the eigenvectors with eigenvalues ≥ a. To show Def 5⇒Def 4,
one can use the minimax-principle for eigenvalues [5] to infer that Ω has a spectral gap between a
and b, where the dimension of the eigenspace with eigenvalues ≥ a equals dimA. �

The class #BQP inherits the useful property of strong error reduction from QMA: the acceptance
probabilities can be amplified from (a, b, c) to (1− 2−r, 2−r, 2−r) by modifying only the verification
procedure. That is, without needing additional copies of the proof |ψ〉. This is established by the
following theorem.

Theorem 7. Let #BQPm(a, b, c) denote #BQP with an m qubit witness. Then #BQPm(a, b, c) ⊂
#BQPm(1− 2−r, 2−r, 2−r) for every r ∈ poly.

Here we describe the procedure, but note that the proof is identical to the one presented in
[11]: the promise that Ω has a spectral gap implies that the procedure behaves the same way with
a bad witness as it does when the considered problem is not in QMA. Assume the witness and a
register A of t ancilla qubits are together in a total register R. We have a verification procedure V
operating on R with completeness and soundness probabilities given by a and b. Our new procedure
V ′ operates as follows:
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1. Set y0 = 1 and i = 1

2. Repeat:

• Apply V to R and measure R by applying |0〉〈0|⊗1m−1⊗1A. Let yi denote the outcome
and set i = i+ 1.

• Apply V † to R and measure R by applying 1m ⊗ |0〉〈0|A. Let yi denote the outcome
and set i = i+ 1.

Until i ≥ N , where N = 8q2r.

3. For each i, set

zi =

{
1 if yi = yi−1

0 if yi 6= yi−1

Accept if and only if
∑N

i=1 zi ≥ N
a+b

2 .

3 The Complexity of the Density of States

We now use the class #BQP to characterize the complexity of the density of states problem and
the problem of counting the number of ground states of a local Hamiltonian. First, we define these
problems more specifically, and then show that they are both #BQP-complete.

Definition 8. Given a local Hamiltonian H =
∑

iHi, the problem dos (density of states) is to
compute the number of orthogonal eigenstates with eigenvalues in an interval [E1, E2] with E2−E1 >
1/poly(n), where states within a small region ∆ = 1/poly(n) (with ∆� E2 − E1) around E1 and
E2 may also be counted.

Definition 9. Given a local Hamiltonian H =
∑

iHi with a spectral gap ∆ = 1/poly(n) above the
ground state subspace, the problem #lh (sharp local Hamiltonian) is to compute the dimension of
said ground state subspace.

Next, we show that #lh and dos are #BQP-complete. We prove this in two stages, first
showing that the problems are contained in #BQP and then showing they are hard for the class.

Theorem 10. #lh and dos are contained in #BQP.

Proof. Clearly #lh can be reduced to solving dos, so we only need to show that dos is contained
in #BQP. To do this, we must design a quantum circuit which accepts any input state |ψ〉 with
average energy 〈ψ|H|ψ〉 ∈ [E1, E2] with high probability, while rejecting any state with energy
outside 〈ψ|H|ψ〉 ∈ [E1 −∆, E2 + ∆] with high probability.

We apply the phase estimation algorithm of [6]. Let {ui} be the eigenvectors of H with eigenval-
ues {ei}, U be the unitary associated with H and {ui} be the phases associated with the eigenvalues.
We begin with an ancilla register of t qubits in the state |0〉A and n qubit input |ψ〉 =

∑m
i=0 αi|φi〉.

We apply a hadamard gate to each qubit in the ancilla register, followed by a series of controlled-U2j

operations controlled by qubit j = 0 . . . t. This gives the state,
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1

2t/2

2t−1∑
k=0

m∑
i=1

αie
2πıkφi |k〉|ui〉 (2)

Then by applying the inverse quantum fourier transform, we have the state,

1

2t

m∑
i=1

αi|ki〉|ui〉 (3)

where ki can be written k
2t = 0.k

(1)
i . . . k

(t)
i as the best t bit approximation to φi. As the best

approximation, φi = ki
2t + δ with 0 < δ ≤ 1

2t+1 . This exponentially small error in the phase

corresponds to an e1/2t+1 ∈ 1/poly(t) error in the phase. By using t = n+ log(2 + 1
2ε) ancilla qubits

we achieve 1/poly(n) = ∆ error with probability of success 1 − ε. Thus by coherently setting the
output qubit to |1〉 if and only if

E1 −∆ ≤
m∑
i=1

|αi|2e2πıki ≤ E2 + ∆ (4)

we determine the energy of the state |ψ〉 with accuracy ∆. The counting extension of this problem,
determining the number of eigenstates in this energy range (dos), must then lie in #BQP. That
is, dos ∈ #BQP. �

Theorem 11. #lh and dos are #BQP-hard.

Proof. Since #lh reduces to dos, it is sufficient to show the #BQP-hardness of #lh. We show that
#lh is #BQP-hard by starting with an arbitrary QMA verifier circuit U = UT . . . U1 and construct
a Hamiltonian with as many ground states as the circuit has accepting inputs. By amplification,
we can assume that the acceptance and rejection thresholds for the verifier are a = 1− ε and b = ε,
where we can choose ε to be a function of n which decreases like exp(−p(n)) for our choice of
polynomial p(n). As before, let A and R be the eigenspaces of Ω with eigenvalues ≥ a and ≤ b,
respectively. Define

U [R] := {U |ψ〉I |0〉A : |ψ〉I ∈ R} (5)

and denote the projector onto this space by ΠU [R]. Notice that for any state |χ〉 ∈ U [R], due to
our rejection threshold b = ε, we have

〈χ|
(
|1〉〈1|1 ⊗ 1

)
|χ〉 ≤ ε . (6)

From here, we mimic Kitaev’s original construction to encode a QMA verifier circuit into a
Hamiltonian which has a “proof history” as its ground state for any proof |φ〉I ∈ A. That is, the
ground states of the Hamiltonian are given by

|Φ〉 =
T∑
t=0

Ut . . . U1|φ〉I |0〉A|t〉T (7)

where the third register is used as a “clock”. The Hamiltonian has the form
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H = Hinit +

T∑
t=1

Hevol(t) +Hfinal (8)

where,

• Hinit = 1I ⊗ (1− |0〉〈0|A)⊗ |0〉〈0|T checks that the ancilla is property initialized, penalizing
states without properly initialized ancillas;

• Hevol(t) is defined as

Hevol(t) =− 1

2
Ut ⊗ |t〉〈t− 1|T −

1

2
U †t ⊗ |t− 1〉〈t|

+
1

2
I ⊗ |t〉〈t|+ 1

2
I ⊗ |t− 1〉〈t− 1|

(9)

and checks that the propagation from time t−1 to t is correct, penalizing states with erroneous
propagation;

• Hfinal = ΠU [R] ⊗ |T 〉〈T |T causes each state |φ〉 built from an input |ψ〉I ∈ R (but which
nonetheless has a correctly initialized ancilla) to receive an energy penalty.

Note we have chosen Hfinal different from Kitaev’s in order to simplify the analysis. With this, H
acts independently on the (T + 1)-dimensional subspaces spanned by {Ut . . . U1|φ〉I |x〉A|t〉T }t=0,...,T

for any choice of |φ〉 ∈ A,R and basis of ancillas |x〉A containing |0〉A. By restricting H to any of
these subspaces we have a random walk with only two distinct cases: either |φ〉 ∈ A and |x〉A = |0〉A
or otherwise. In the second case the ground state energy is 1/poly(n) above the first case, and
the ground state degeneracy is dimA. It follows that the total Hamiltonian H has a 1/poly(n)
spectral gap between the ground state space and the first excited state. These claims are made
more rigorous in Lemma 12 below.

As we have presented it, H is not a local Hamiltonian, so we must relate it to a new, local one
while retaining the relevant properties, namely the ground space dimension (up to small splitting in
energies) and the 1/poly(n) spectral gap. The first step is to replace our nonlocal version of Hfinal

with a local one and show that this change doesn’t significantly affect the spectrum. As we will
prove subsequently in Lemma 14, the standard final Hamiltonian term Hstd

final = |0〉〈0|1⊗1⊗|T 〉〈T |T
obeys the inequality

Hstd
final ≥ Hfinal −

√
ε1 . (10)

Thus, if instead of projecting onto the space 1−ΠU [R] to check proper evolution, we simply check
that the application of the operators UT . . . U1 resulted in a |1〉 on the first qubit, then the additional
error we can incur is at most

√
ε. Put differently, the first excited state energy decreases by no

more than
√
ε. Hence, replacing our nonlocal Hfinal with the local Hstd

final does not affect the excited
states significantly.

Now we consider the ground state space. The error incurred when the input state is composed
of a proper proof causes the energy of the ground states to increase by no more than ε, for the
following reason. Similar to Eq. 6, if we have a state |χ〉 ∈ U [A], then from strong amplification
we have the bound

〈χ|
(
|0〉〈0|1 ⊗ 1

)
|χ〉 = 〈χ|Hstd

final|χ〉 ≤ ε . (11)
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Thus we obtain a Hamiltonian with a ground state subspace with splitting ≤ ε, a 1/poly(n) spectral
gap above it, and for which the dimension of the ground state space remains dimA.

The last correction that needs to be made is the standard improvement from a log-local Hamil-
tonian to a k-local one. With our Hamiltonian as presented our clock operators operate on the
entire clock register consisting of O(log T ) qubits. The log-local to k-local improvement can be
done in exactly the standard way as seen in [4, 10]. �

We must now prove our claim about the spectral properties of the “bare” Hamiltonian, before
the localization procedure.

Lemma 12. Let H|S1 and H|S2 be H restricted to the subspaces spanned by {Ut . . . U1|φ〉I |0〉A|t〉}t=0...T

with |φ〉 ∈ A and {Ut . . . U1|φ〉I |x〉A|t〉}t=0...T with |φ〉 ∈ R, respectively. Then the smallest eigen-
value of H|S2 is 1/poly(n) larger than the largest of H|S2, and thus H has a 1/poly(n) spectral
gap.

Proof. Our proof follows in direct analogy with the proof in Ref. [10]. We can block diagonalize
H by the (conjugate) action of the following unitary operator,

W =

T∑
j=0

Uj · · ·U1 ⊗ |j〉〈j|T , (12)

which maps H → H ′ = W †HW . This of course has no effect on the spectrum, so we can work
with the simpler H ′ from now on.

Let us explicitly write the effect of conjugation by W on the terms of H. The first term is
unaffected, H ′init = Hinit. The final term becomes H ′final = ΠR ⊗ |0〉〈0|A ⊗ |T 〉〈T |T , where ΠR is
simply the projector onto the space R, and the ancillas are in the correct initial state.

We can now conjugate each of the terms in Hevol(t) separately. For example, the first term gives

W †(Ut ⊗ |t〉〈t− 1|)W = 1⊗ |t〉〈t− 1| . (13)

The other terms are exactly analogous, and we find that

H ′evol(t) = 1⊗ 1

2
(|t− 1〉〈t− 1|+ |t〉〈t| − |t〉〈t− 1| − |t− 1〉〈t|) . (14)

The total evolution Hamiltonian is then a tridiagonal matrix which looks like a hopping Hamiltonian
in the clock register, ∑

t

H ′evol = 1⊗ E , (15)

where the (T + 1)-by-(T + 1)–dimensional tridiagonal matrix E is given by

E =



1
2 −1

2

−1
2 1 −1

2

−1
2 1 −1

2

−1
2

. . .

1 −1
2

−1
2

1
2


. (16)
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Now we show that H ′ (and thus H) has dim(A) small eigenvalues. Consider H ′|S1 , then create
|Φ′〉 = |φ〉I |0〉A|ψ〉 with ψ = 1√

T+1

∑T
t=0|t〉. Now compute,

〈Φ′|H ′|S1 |Φ′〉 = 〈Φ′|H ′init|S1 |Φ′〉+ 〈Φ′|
∑

H ′evol|S1 |Φ′〉+ 〈Φ′|H ′out|S1 |Φ′〉

= 〈Φ′|H ′init|S1 |Φ′〉+ 〈Φ′|1⊗ E|Φ′〉+ 〈Φ′|(ΠR ⊗ |0〉〈0|A ⊗ |T 〉〈T |)|Φ′〉

= 0 + 0 + 〈φ|ΠR|φ〉
1

T + 1

≤ ε

T + 1

where, since we have restricted ourselves to |φ〉 ∈ A, 〈φ|ΠR|φ〉 ≤ ε.
Now that we have an upper bound on the eigenvalues of H|S1 , we proceed to determine a lower

bound for the eigenvalues of H|S2 . Let H ′ = A1 +A2 with A1 = H ′init +H ′out and A2 = H ′evol. Since
A1 is the sum of commuting projectors it follows that its eigenvalues are all non-negative integers,
and thus its minimal non-zero eigenvalue is no less than 1. The smallest positive eigenvalue of
A2 is the smallest positive eigenvalue of E, which is bounded in Ref. [10] to be greater than
1 − cos(π/T + 1) ≥ c/T 2 with c a positive constant. Now let L1 and L2 be the null spaces of A1

and A2 respectively, and note that L1∩L2 = {0}. By bounding the angle between these subspaces,

sin2(θ) ≥ 1−
√
ε

L+1 , and using the following lemma (both given in Ref. [10])

Lemma 13. Let A1 and A2 be nonnegative operators, and L1 and L2 their null subspaces, where
L1 ∩ L2 = {0}. Suppose no eigenvalue of A1 or A2 is smaller than v. Then,

A1 +A2 ≥ 2v sin2 θ

2
1 (17)

we can lower bound the smallest positive eigenvalue of H ′|S2 ,

〈Φ′|H ′|S2 |Φ′〉 ≤
c(1−

√
ε)

L2(L+ 1)
(18)

As these cases give an upper bound to the largest eigenvalue of the ground state and a lower
bound to the smallest eigenvalue of the first excited state, it follows that there is a 1/poly(n)
spectral gap between the ground state and the first excited state of our Hamiltonian H.

Since we can create exactly one good witness for each φ ∈ A, we know that the ground state
degeneracy of H is at least dimA. However, by the definition of #BQP there are no more than
dimA witnesses accepted with high probability, thus the ground state degeneracy of H is equal to
dimA. �

It remains to prove Eq. 10, which is a corollary to the following lemma. (It follows by choosing
P = |0〉〈0|1 ⊗ 1, Q = ΠU [R], and noting that ε is the bound on the rejection probability for a state
in U [R].)

Lemma 14. Let P and Q be projectors such that ‖Q(1− P )Q‖ ≤ ε. Then

P −Q ≥ −
√
ε1 . (19)
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Proof. We begin by recalling the result due to Jordan [9] (see Ref. [7] for a more modern treatment)
for the simultaneous canonical form of two projectors. In the subspace where P and Q commute,
both operators are diagonal in a common basis and the spectrum is either (0, 0), (0, 1), (1, 0), or
(1, 1), and direct sums of those terms. In the subspace where they don’t commute, the problem
decomposes into a direct sum of two-by-two blocks given by

Pj =

(
1 0
0 0

)
, Qj =

(
c2 cs
cs s2

)
, (20)

where s = sin(θj) for some angle θj , c
2 + s2 = 1, and the subscript j just labels a generic block.

In fact, this two-by-two block form is completely general if we allow embedding our projectors
into a larger space while preserving their rank. The rank-preserving condition guarantees that our
bound is unchanged, since we are only appending blocks of zeros, and so we will consider this
two-by-two form without loss of generality.

The constraint that ‖Q(1 − P )Q‖ ≤ ε implies constraints on the values that the sin(θj) can
take. In particular, we can directly compute this operator norm in each block separately, and we
find that for all j

‖Qj(1− Pj)Qj‖ = sin2(θj) ≤ ε . (21)

We can also directly compute in each block that

Pj −Qj =

(
1− c2 1− cs
−cs −s2

)
. (22)

The spectrum of this operator is easily computed to be ±|sin(θj)|. Thus, the least eigenvalue of
P −Q is bounded from below by −

√
ε. �

4 Quantum vs. Classical Counting Complexity

We have shown that the quantum counting class #BQP exactly captures the complexity of counting
the degeneracy of ground states and computing the density of states for local hamiltonians. Now
we relate this quantum class to the well known classical class #P. In particular, we use a weakly
parsimonious reduction to show that #BQP and #P are equal. That is, for any function f ∈ #BQP
there exist polynomial-time computable functions α and β, and a function g ∈ #P, such that
f = α ◦ g ◦ β. This differs from Karp reductions where no postprocessing is allowed, α = Id, but
it still only requires a single call to a #P oracle. This implies that counting the number of ground
states of a local quantum hamiltonian is no harder than it is for a classical one.

Theorem 15. #BQP =w.p.r. #P

Proof. Clearly, #P ⊂ #BQP: we simply choose our quantum verifier to compute the value of the
classical function encoding the #P problem. We now show that any #BQP problem can be solved
by computing a #P function. That is, given the verifier operator Ω we determine the dimension of
the satisfying subspace by counting satisfying inputs to an efficiently computable boolean function.

First, we use strong error reduction to let a = 1− 2−(n−2) and b = 2−(n+2). It follows that
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|dimA− tr Ω| ≤ 2n2−(n+2) =
1

4
(23)

and thus we need to compute tr Ω to accuracy 1/4. This can be done using the “path integral”
method previously used to show containments of quantum classes inside PPand #P. We rewrite
tr Ω =

∑
ζ f(ζ), where the sum is over products of transition probabilities along a path, which we

label

ζ ≡ (i0, . . . , iN , j1, . . . , jN ) , (24)

so that

f(ζ) =〈i0|I〈0|AU †1 |j1〉〈j1|U
†
1 · · ·U

†
T |jT 〉×

〈iT |
[
|0〉〈0|1 ⊗ 1

]
|iT 〉〈iT |UT · · ·U1|i0〉I |0〉A .

(25)

Since any quantum circuit can be recast in terms of real gates at the cost of doubling the
number of qubits, we can simplify the proof by assuming f(ζ) to be real. Computing

∑
ζ f(ζ) to

the required accuracy can now be mapped to summing over a boolean function
To achieve the desired accuracy it is sufficient to approximate f up to |ζ| + 2 digits, where

|ζ| = poly(n) is the number of bits in ζ. Now define,

g(ζ) := round
[
2|ζ|+2(f(ζ) + 1)

]
(26)

and note that g(ζ) is a positive and integer-valued function satisfying∣∣∣[2−|ζ|−2
∑
ζ

g(ζ)− 1
]
−
∑
ζ

f(ζ)
∣∣∣ ≤ 1

4 . (27)

Finally, by defining a boolean indicator function,

h(ζ, ξ) =

{
1 if 0 ≤ ξ < g(ζ)

0 otherwise .

we can write g(ζ) =
∑

ξ≥0 h(ζ, ξ) which can be solved by a single query to a black box solving #P
problems.

This shows that tr Ω can be approximated to accuracy 1
4 , and thus dimA can be determined

by counting the number of satisfying assignments of a single boolean function h(ζ, ξ) that can be
efficiently constructed from Ω, i.e., by a single query to a black box solving #P problems. �

5 Summary and Discussion

In this work, we considered two problems: computing the density of states and computing the
ground state degeneracy of a local Hamiltonian of a spin system. In order to capture the com-
putational difficulty of these problems we introduced the quantum complexity class #BQP, the
natural counting version of the class QMA. We proved that this complexity class exactly captures
the difficulty of our two problems, even when restricting to local Hamiltonians on two-dimensional
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lattices of qubits or to one-dimensional chains, since all these problems are complete problems for
the class #BQP.

We have further shown that #BQP is no harder than its classical counterpart #P. In particular
this implies that computing the density of states is no harder for quantum Hamiltonians than it is for
classical ones. While this quantum-classical equivalence might seem surprising at the Hamiltonian
level, it should be noted that the classes #P and PP quite often form natural “upper bounds” for
many quantum and classical problems. As an example, consider the class PQP, the unbounded
version of the class BQP. It follows from arguments in [1] used to show BQP ⊂ PP that PQP = PP.
That is, PP forms a natural upper bound for what is computable using both quantum circuits
and classical probabilistic ones. The oracle equivalence of PP and #P (that is, PPP = P#P) then
motivates the notion that #P forms an upper bound for quantum counting.

This work leaves open a number of important questions. In the future, we wish to investigate the
feasibility of amplifying the “intermediate” witnesses of the traditional QMA to a low probability
of acceptance as explored previously in Ref. [2,8]. We are also interested in the question of whether
#P and #BQPare set equivalent. That is, whether they contain exactly the same constituent
problems.
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