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Abstract

The Mu2e experiment at Fermilab is searching for the direct neutrinoless conversion
of a muon to an electron. The experiment requires an extremely efficient Cosmic Ray
Veto to detect cosmic muons and ignore electrons produced by them that can be
confused with real direct conversions. The current Cosmic Ray Veto algorithm suffers
from increasing deadtime with beam intensity. This study seeks to explore using a
deep neural network to maintain similar cosmic rejection efficiencies while minimizing
the experimental deadtime. We found that using machine learning improved upon the
current Cosmic Ray Veto algorithm in terms of both the cosmic background and the
deadtime, yielding much promise for future exploration.
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1 The Mu2e Experiment

Although the Standard Model of particle physics is well-tested in many areas, it appears
to be incomplete. Even though Charged Lepton Flavor Violation (CLFV) (a transition
between taus, muons, and electrons that does not conserve lepton family number) is not
explicitly forbidden in the Standard Model of particle physics, it is greatly suppressed. Be-
yond the Standard Model, there exist predictions for observable CLFV rates, and searches
of incidences of this have greatly increased in the past few years [1].

One example of CLFV is the neutrinoless conversion of a muon to an electron within the
Coulomb field of a nucleus. The Mu2e experiment, expected to start in 2025, will be looking
for evidence of such a conversion. The experiment is a multinational project consistent of
multiple labs and universities, mounted at the Fermi National Accelerator Laboratory near
Chicago [1].

To search for the direct neutrinoless conversion of a muon to an electron, a proton pulse
hits a production target every 1.7 µs, where it will produce a beam of low-energy negatively
charged muons which will be transported to and stopped at a series of thin foils known as
the stopping target by the transport solenoid, which selects the particle’s momentum and
avoids a direct line of sight from production to the stopping target. At the stopping target,
the individual muons will be captured in atomic orbits. The produced conversion electron’s
momentum, energy, and a variety of other attributes will be recorded by the tracker and
calorimeter [2]. The apparatus is pictured in Fig. 1, and the production of a conversion
electron from a muon hitting the stopping target in Fig. 2.

Figure 1: The Mu2e apparatus, with the proton beam, transport solenoid, and detector solenoid
separated and pictured. To prevent magnetic bottles which trap muons, the magnetic field of the
solenoids is graded (hence the magnetic field strengths in Teslas in the figure). [2]

The signal window for conversion is approximately 1000 ns, with 700 ns to the next proton
pulse. Within this time window, if the muon converts to an electron without emitting a
neutrino, and the experiment detects it, then a direct muon-to-electron conversion has been
found.

2 The Cosmic Ray Veto

The occurrence of a neutrinoless conversion of a muon to an electron is extremely rare, if it
occurs at all. A large barrier to achieving the desired sensitivity is the cosmic-ray background,
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Figure 2: Left: An event produced by a cosmic ray muon that knocks out a conversion-like electron
in the Detector Solenoid. Right: A cosmic-ray neutron is incident from the upper right and interacts
in the apparatus to produce an upstream-going electron. This electron reverses direction in the
Detector Solenoid magnetic mirror and passes again through the tracker. This event is not vetoed
by the CRV, because the neutron is a neutral particle, but can be vetoed by the tracker.

induced by cosmic-ray muons. Each minute, approximately one cosmic-ray muon hits the
Earth’s surface per square centimeter. These muons are expected to produce, on average,
one event a day (in this case, event means an electron that has the same characteristics as a
real conversion electron) that cannot be distinguished from a successful conversion electron
[3].

The rate of such an occurrence has to be reduced by a factor of 10,000 in order to reduce
the background to less than one event [3]. The solution to this problem is to surround the
Mu2e detection apparatus with a detector that identifies cosmic-ray muons and rejects, or
“vetoes”, time windows around cosmic-ray muons that produce conversion-like backgrounds
during the offline analysis.

Figure 3: A drawing of what the CRV will look like, along with its coordinate axes. The white
object next to the CRV-U is a human, shown for scale.

The Cosmic Ray Veto (CRV), displayed in Fig. 3, consists of four layers of extruded
polystyrene scintillators (a material that “scintillates”, or emits light, when excited by ion-
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izing radiation) counters with embedded wavelength shifting fibers, read out with Silicon
Photomultiplier (SiPM) photodetectors [3]. These counters range from 900 to 6600 mm
long, and have a cross section of 50 × 20 mm2 [3]. These detectors sense when charged
particles enter the CRV, and will be used to detect muons and veto the events associated.

An track stub consists of at least three adjacent strips of the CRV with signals over
a certain threshold within a 5 ns time window, signifying a real track localized in both
space and time. These tracks are reconstructed using an algorithm developed by Dr. Ralf
Ehrlich. Once a track stub is recorded within the CRV, the CRV reconstructs various numeric
variables for the track stub using the algorithm by Dr. Ehrlich (such as position, light yield,
and time), and the tracker itself also records variables pertaining to the interaction of the
conversion electron, (such as the momentum, track quality, and the time recorded). Note
that particles can enter the tracker without hitting the CRV and still be considered electron
events.

Given a good track stub, a 200ns time window around the respective event recorded by
the tracker will be vetoed during offline analysis to prevent consideration of any possible
electrons produced by a cosmic-ray muon.

3 Study Goals and Strategy

The CRV currently employs a “time window cut” to veto potential conversion electrons
produced by cosmic-ray muons. All electron events outside this time window are classified
as possible conversion electron (CE) events, and all those within the window are classified
as background. With a primary scintillator light yield of 17,000 (see the discussion on light
yield in Section 4), the CRV has a very high efficiency rate in identifying cosmic-ray muons.

However, the CRV produces false track stubs from random coincidences due to the beam-
induced background in the scintillator counters at high beam intensities. Deadtime, or the
fraction of the time that the CRV spends vetoing events, maxes out at approximately 50%
at the highest expected beam intensity with the current algorithm. Such behavior is not
ideal, as the greater the deadtime the greater the running time of the experiment to achieve
a given sensitivity.

The aging of the CRV will also reduce the capability of the CRV to suppress the back-
ground of cosmic-ray muons, as the light yields of the SIPMs decrease over time in the
scintillator counters, which is shown in Fig. 3. The aging rate has been higher than ex-
pected. A new algorithm that is both able to decrease the deadtime and reduce reliance
on the light yield of the CRV is being investigated from many angles. Even though the
current CRV veto algorithm is quite good at correctly identifying cosmic-ray muons, it is
quite crude. It is the goal of this study to make a more sophisticated veto algorithm using
machine learning.
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Figure 4: The deadtime produced by the CRV vs the beam intensity. Beam intensity is relative
to the nominal value of 3.9× 107 protons per pulse.

Figure 5: The cosmic background of the CRV Veto vs the scintillator lightyield on the CRY4
Sample

This study seeks to lessen the deadtime, while keeping a similar cosmic-ray induced
background, by using a deep neural network instead of a time window cut. Keeping the
induced background rate low relative to the light yield was not a primary objective of the
study, but it was recognized that a deep neural network could also help to mitigate issues
related to aging, so that was studied as well.

The general strategy for the study was to do three things:

1. Generate a sample of conversion electrons overlaid with beam-induced noise. This
would be the sample used to determine the deadtime. Ideally, none of the events
would be vetoed. This sample is called the CE/Noise sample, as it would consist of
conversion electrons overlaid with beam-induced noise.

2. Generate two independent samples of cosmic-ray muons which produce conversion-like
events, one for training and one for testing. These would be samples for which, ideally,
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all of the events would be vetoed.

3. Optimize an algorithm so as many events as possible in the CE/Noise sample are not
vetoed while still maintaining an adequately low induced cosmic-ray background from
the cosmic-ray muon samples.

Two conversion electron samples for training and testing are not needed because the
traits for the CE/Noise sample are relatively similar; simulating another dataset of CE/Noise
events would simply produce similar events to the original dataset, making it unnecessary.
The cosmic-ray muons, however, need to have two separate datasets because each cosmic-ray
event can be very different, and using an overlapping sample makes for a much less rigorous
testing method. The algorithm that was chosen to optimize the background with the dead-
time in this study was the current algorithm developed by Dr. Ralf Ehrlich, supplemented by
a deep neural network at the last step instead of the time window cut that is used currently.

4 Simulated Datasets

Data were generated using GEANT4 (GEometry And Tracking Iteration 4), a tool for
modeling the passage of elementary particles through matter [4]. The software for Mu2e
instantiates a solid model of the Mu2e apparatus within the GEANT4 framework [5]. Three
different data sets were generated by Dr. Yuri Oksuzian, a scientist at Argonne National
Laboratory. These simulated datasets mimicked the behavior of their respective particles
through the CRV and the tracker, and had simulated numeric variables corresponding to
what the tracker/CRV would record with real data. The distributions in Figs. 6, 7, and 8
have the same coordinate axis as the one shown in Fig. 3.

Lightyield will be referenced throughout this study. It is a numeric variable when simu-
lating datasets that represents the number of PEs in the primary scintillator of the CRV. The
conversion factor between the light yield and the number of PEs is 0.001726. The conversion
between the lightyields used and PE count is in Table 1.

Lightyield PE Count
7,000 12.08
9,000 15.53
11,000 18.99
13,000 22.44
15,000 25.89
17,000 29.34

Table 1: A table of lightyields on the left with their corresponding PE count on the right.

The CE/noise dataset was produced by simulating conversion electrons, overlaid with
noise produced by the Mu2e beam, which consists of neutrons and gammas, and was pro-
duced at a light yield of 17,000. Overall, this dataset represented events that should not be
vetoed, lest they contribute to the deadtime of the experiment. Figure 6 shows the distribu-
tion of noise events that were successfully reconstructed. The sample corresponds to “Run
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1”, or a simulation of the first run of the Mu2e experiment, which would run for 3.46× 106

seconds. There were 2,385,473 Noise/CE events in the sample, and the event distribution is
in Fig. 6.

Figure 6: The xz distribution of the CE/Noise sample. These are only CE/Noise events that
produced a track stub in the CRV; there were a large number of CE/Noise events that were
reconstructed by the tracker but did not produce a track stub in the CRV that are not pictured.

The CRY3 dataset corresponds to cosmic-ray muons that produced an electron-like track
that was successfully reconstructed in the tracker. The CRY3 sample was a mix of high-
energy and low-energy muons, as defined in Eq. 1.

Classmuon =

{
High Energy Energy Deposition > 14MeV

Low Energy Energy Deposition < 14MeV
(1)

The scintillator response assumed a primary scintillator lightyield of 17,000, just like the
CE/Noise Sample. There are 1,842,456 reconstructed muon events in the CRY3 dataset, and
the event distributions are in Fig. 7, separated into high and low energy muon components.
The reason for the distinction between high and low energy muons was so that any possible
performance differences could be identified, in case the difference in energy deposition created
a difference in performance.

The CRY4 dataset was produced in nearly exactly the same way as the CRY3 dataset.
However, there were differences between the two samples. The CRY4 sample used the most
up-do-date iteration of the generation algorithm, and had greater statistics, along with an
updated shielding geometry. The sample also contained samples at differing light yields, in
order for the algorithm to be tested on multiple light yields.

The light yields that were generated were at 17,000, 15,000, 13,000, 11,000, 9,000, and
7,000. There were 15,157,304 events total in the CRY4 muon sample. Fig. 8 shows the
position distribution of the CRY4 sample, separated into high and low energy components.
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Figure 7: Position distributions of the CRY3 sample. The distribution in the top left is the xz
distribution of the high energy muons, the top right the xz distribution of low energy muons, and
the bottom the combined xz distribution. The two areas of higher density are the tracker and
calorimeter, on the left and the right.

5 Important Definitions

The following section serves to define terms used for the rest of the paper.

5.1 Variables

Table 2 defines the variables used throughout the study. The variables in bold were
selected for use in the machine learning model, whereas the others are simply variables refer-
enced throughout the paper. These variables were within every sample produced. However,
events that did not hit the CRV (and were only reconstructed by the tracker) did not have
any of the variables that began with “crvinfo”, as they were attributes provided by the CRV.
The variables were used at the recommendation of Dr. Yuri Oksuzian.
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Figure 8: Position distributions of the CRY4 Sample. The distribution in the top left is the xz
distribution of the high energy muons, the top right the xz distribution of low energy muons, and
the bottom the combined xz distribution.

Variable Name Corresponding Attribute
crvinfo x recorded X position of the track stub inside CRV
crvinfo y recorded Y position of the track stub inside CRV
crvinfo z recorded Z position of the track stub inside CRV

de nhits Number of tracker hits for particles moving “downstream” towards the tracker
ue nhits Number of tracker hits for particles moving “upstream” towards the stopping target

dequal TrkPID Particle ID
dequal TrkQual Track Quality

deent td Pitch Angle
deent z0 Starting z value of track
deent d0 Track’s minimum displacement from the z axis
deent om Minimum transverse radius

crvinfo PEs PE yield of primary scintillators
de t0 TimeTracker

crvinfo timeWindowStart TimeCRV

crvinfo dT ∆T = TimeCRV − TimeTracker
deent mom Momentum

deent d0 om Maximum transverse radius
is cosmic Cosmic status of event

Table 2: Definitions of the variable names. Those in bold were used for the machine learning
model defined in Section 8. Variables starting with “crvinfo ” are variables recorded in the CRV;
everything else is recorded in the tracker, with the exception of “is cosmic”, which was a user-defined
variable meant to distinguish between cosmic-ray muon and CE/noise events.

The Particle ID and Track Quality variables were produced from machine learning out-
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puts from track-finding algorithms used for the tracker. They output a confidence level
corresponding to the following:

• The Particle ID is a machine learning produced number that indicates how confident
the event is a conversion electron or not, ranging on a scale from 0 to 1, where 1
indicates full confidence.

• The Track Quality is a machine learning produced number that indicates how good of
a track an event has, ranging on a scale from 0 to 1, where 1 indicates a very good
track.

Similarly, the pitch angle is a unitless tangent ratio between the solenoid axis and par-
ticle direction that helps to remove slow moving particles [6]. Movement upstream and
downstream are towards the stopping target from the calorimeter and the calorimeter from
the stopping target, respectively. Some events in the tracker move in some combination
of upstream and downstream, so checking whether an event’s track is moving downstream
is not the same as checking if an event’s track is not moving upstream, hence the further
restriction. For example, the electron produced by the cosmic-ray neutron in Fig. 2 moves
upstream, then reverses direction and moves downstream as well.

5.2 Cut Terminology

There were a variety of cuts used in the study as well. These cuts, based off of the
attributes of particles that enter the tracker, have been optimized over the course of multiple
Mu2e studies to both help suppress cosmic-ray muons alongside other backgrounds, and to
separate noise from real conversion electrons.

The different cut sets are utilized for different purposes the stricter they are, and both
the stricter and looser cuts were used throughout the study. The cuts are presented in a
hierarchy going from least restrictive to most because sometimes looser cuts were used for
different datasets, and it helps to understand what the exact differences are between cuts
to further understand some of the steps further into the study, since they all build off one
another. Table 3 displays the number of events for the CRY3, CE/Noise, and CRY4 samples
after given cuts. The code for the cuts is in Appendix C.

Loose Box Cuts

These were the least restrictive cuts, simply checking whether an event was triggered
or not, as well as some checks on basic attributes: the pitch angle must be greater than
0.577350 and less than 1, the minimum displacement from the z-axis must be greater than
-80 and less than 205 mm, and the sum of the minimum displacement from the z-axis and
twice the minimum transverse radius must be greater than 450 mm.

Loose Cuts

The Loose Cuts add restrictions for various variables that are indicative of whether an
event is a good track or not. The event’s track quality must be greater than 0.8, and the
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particle ID greater than 0.95. The upstream status, or whether the event’s track was moving
upstream, needs to be less than or equal to 0 (which indicates that it was not moving
upstream). These are all applied on top of the Loose Box Cuts. The xz distribution of the
cuts applied to the CRY4 dataset is in the top-left image of Fig. 9.

The Loose Cuts are more restrictive than either the Box Cuts or the Loose Box Cuts,
but less restrictive than every other cut that checks for track quality, hence the name.

Box Cuts

The Box Cuts are a more restrictive version of the Loose Box Cuts, with the following
variable restrictions added to the Loose Box Cuts: the downstream status, or whether the
event was moving downstream, needs to be greater than 0, the minimum displacement from
the z-axis must be less than 105 mm, and the sum of the minimum displacement from the z-
axis and twice the minimum transverse radius must be less than 680 mm. These are applied
after the Loose Box Cuts.

Noticeably, the upper restriction on the distance from the z-axis became more restrictive,
and there is now an upper bound to the sum of the distance from the z-axis plus twice the
minimum transverse radius, and a necessary downstream status.

Quality Cuts

The Quality Cuts are cuts on the quality of the conversion electrons found in the tracker.
These cuts are the same as those added in the Loose Cuts (track quality greater than 0.8
and particle ID greater than 0.95), with the only difference between the Quality Cuts and
the Loose Cuts being that the Quality Cuts are applied on top of the Box Cuts, whereas the
Loose Cuts are applied on top of the Loose Box Cuts.

Kinematical Cuts - Extended Momentum Cut

The Extended Momentum Cut (or Cut extmom) is the looser of the two Kinematical
Cuts, or the strictest cut available to events. The momentum must be greater than 100 and
less than 115 MeV. These cuts are applied on top of the Quality Cuts.

This cut was often used in place of the Physical Momentum Cut mentioned below when
there weren’t enough events to have sufficient statistics. This was usually the case with the
CRY4 Cosmic Sample, as the Physical Momentum Cut usually eliminated too many cosmics
for the results to be statistically significant. The xz distribution of the cuts applied to the
CRY4 dataset is in the top-right image of Fig. 9.

Kinematical Cuts - Physical Momentum Cut

The Physical Momentum Cut (or Cut phymom) is the strictest cut available, and ensures
that almost anything that passes, if a part of the CE/noise sample, is a CE, and mitigates
the cosmic background by almost 99%. The momentum must be greater than 103.85 and
less than 105.1 MeV, and is applied on top of the Quality Cuts. The xz distribution of the
cuts applied to the CRY4 dataset is in the bottom image of Fig. 9.
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In the actual experiment analysis, the Physical Momentum Cut would be applied to the
dataset in order to discern what events were cosmics, CEs, etc.

Cut CRY3 CE/Noise CRY4
No Cut 1,842,456 2,385,473 15,157,304

Loose Box Cuts 220,918 1,814,739 2,059,156
Box Cuts 133,307 1,806,498 1,280,300

Loose Cuts 75,175 1,579,431 786,184
Extended Momentum Cut 11,577 1,457,507 130,903
Physical Momentum Cut 847 893,575 9,863

Table 3: A table of how many events remain for the three datasets after the given cuts defined in
Section 5.2. Each cut is more restrictive than the last going from top to bottom, as they all build
off of each other. Note the small number of remaining events in the CRY3 and CRY4 samples after
the Physical Momentum Cut relative to the original number of events without cuts, and the larger
number of CE/Noise events after the Physical Momentum Cuts.

Figure 9: The position distributions for track stubs from the CRV in the CRY4 sample after
various cuts. The top left is after the Loose Cuts, the top right after the Extended Momentum
Cut, and the bottom after the Physical Momentum Cut. Note the number of cosmic-ray events
eliminated after each cut.

CRV Time Window Cut

The CRV Time Window Cut is the cut used in the current algorithm to veto events in
coincidence with a track stub in the CRV. It is applied after either of the Kinematical Cuts
(for the actual experiment it would be the Physical Momentum Cut, but in this case it could
be either of the cuts, depending on how good the statistics are). It is a 200 ns window
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determined by the time recorded in the CRV and the time recorded in the tracker. The cut
applied is that ∆T must be greater than −50 ns and less than 150 ns.

5.3 Deadtime

The deadtime of the experiment is the fraction of data removed by the action of CRV
Veto. Part of the deadtime comes from the vetoing of cosmic-ray muons, whereas the other
portion comes from false coincidences in the CRV induced by neutrons and gammas from the
exposed beam. The latter of the two dominates. Real conversion electron events that the
experiment is looking for may be vetoed if they look similar to a cosmic-ray muon. Similarly,
the deadtime that was viewed for this study was the “harmful” deadtime, or the time spent
vetoing false coincidences. Due to this, every reference to “deadtime” in this study refers to
the deadtime induced by conversion electrons and noise. The expression for the deadtime
and its uncertainty can be expressed as:

deadtime = 1− IdentifiedCE

Total PossibleCE

, (2)

∆deadtime =

√
IdentifiedCE

Total PossibleCE

(3)

The denominator of the fraction in the equations above is all the CE/Noise events that
passed Kinematical Cuts with the Physical Momentum Cut.

This value must be minimized, as the greater the deadtime, the longer the experiment’s
anticipated runtime for a given sensitivity. Since the CRV vetoes the entire 200 ns window
surrounding an event that it believes to be a cosmic muon, a deadtime of, for example, 50%
would correspond to a 100% increase in the time required for the experiment, as the CRV
would be unable to detect anything else during that window. Decreasing the deadtime of
the experiment would then decrease the anticipated experimental runtime.

5.4 Cosmic-Ray Induced Background

The cosmic-ray induced background should be reduced to well less than one expected
event over the course of the experiment. Cosmic-ray muons that pass through the CRV can
produce a background in the form of a cosmic-ray induced electron. Due to the simulated
nature of the data produced, the number of events had to be normalized to the expected
“livetime” for one run of the Mu2e experiment, since the overall background over a run is
heavily dependent on the livetime of the experiment. Run One of Mu2e’s livetime is equal
to 3.46× 106 seconds.

The simulated livetime for the low energy muons was 1.36×108+5.09×107 = 1.869×108

seconds (the livetime was divided into two portions because the low energy muons were
simulated in two different batches). The simulated livetime for the high energy muons was
3.64× 106 seconds. The expected cosmic background, and its uncertainty, over the course of
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one run of the experiment is below:

bkg =
Number of cosmic events not vetoed

livetimesample

× livetimeMu2e Run, (4)

∆bkg =

√
Number of cosmics not vetoed (after event selection criteria)

livetimesample

× livetimeMu2e Run

(5)

6 The Current Mu2e Veto Algorithm

The current Mu2e veto algorithm finds track stubs in the CRV using an algorithm devel-
oped by Dr. Ralf Ehrlich, then uses the CRV Time Window Cut Veto, where CE-like events
in the tracker that pass the CRV Time Window Cut are assumed to be cosmic-ray induced.

Figure 10: The ∆T distribution and identification of the CRV Time Window Veto for two different
datasets. The top plot is the Time Window Cut applied after the Extended Momentum Cut on the
CE/Noise sample, and the bottom plot the Time Window Cut applied to the CRY4 sample before
any other cuts. Everything identified as “not CE” would be vetoed, and everything identified as
“possible CE” a possible CE event (pending the Physical Momentum Cut).

Figure 10 displays how the CRV Time Window Cut works with respect to the ∆T value.
Note how everything within the window is identified as a cosmic-ray induced event, and
everything outside a possible real CE event in Fig. 10.
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7 Preparing the Data

In order to be used for machine learning, as well as data analysis in general, the data
generated had to be prepared. This section outlines the steps taken to prepare the data for
input into the machine learning model.

All of the data had to be labelled in a binary fashion for proper classification into 2
classes. Since the data for the CE/Noise data was intermixed with the CRY3 and CRY4
data for the training and validation of the machine learning model (as shown later on), an
easy way to differentiate them was needed, hence the labelling. As such, another variable
was added to the dataset called “is cosmic”, and assigned a 1 if the event was from the CRY3
or CRY4 samples, and a 0 if it was from the CE/Noise dataset.

The CE/Noise data, due to issues with its simulation, led to a relatively unphysical
distribution of the recorded z position of the track stubs in the CRV due to the peaks in the
dataset. As such, the z positions were smeared such that the peaks were still represented,
but the distributions made smoother, making them slightly more realistic, as shown in Fig.
9 below.

Figure 11: The z-position of CE/Noise track stubs in the CRV before and after smearing.

8 Building the Model

The Machine Learning model was built using the Keras [7] sequential programming in-
terface for deep neural networks, which is a package for Python, the programming language
used. This package allows for easily customizeable deep neural networks to be built and
used. NumPy and Pandas, packages for data management and manipulation were also used
throughout the study. The variables selected to be input into the model, referenced in Table
2, were at the recommendation of Dr. Yuri Oksuzian.

Neural networks are a method of machine learning where patterns are recognized using
sophisticated mathematical modeling by inputting data through “neurons”, known as per-
ceptrons, that exist in different layers of varying input widths. A model is the structure of
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these neurons used for machine learning.
The way that Keras constructs deep neural networks, or neural networks with more than

one layer, is by adding them sequentially (hence the “sequential” interface). Layers are
added one after the other with each one inputting into the next, where the output of the
last layer added is the output of the entire machine learning model itself.

8.1 The Reasoning Behind the Existence of Two Models

There are two types of events within all of the simulated data: events that produce hits
in the CRV, and those that do not. Events that do not produce hits do not have CRV
variables, but are still recorded by the tracker, and thus still have the variables from the
tracker.

At the beginning of the study, there was only one model - no matter the type of event.
However, the existence of CRV variables correlated with whether an event was a CE/Noise
event or a cosmic muon, diluting the actual correlations of the variable within the dataset.
As seen in Fig. 12, the three CRV variables (z position, PE Yield, and ∆T) are all perfectly
correlated with one another, and have the same correlation value to cosmic status as well.
This behavior was due to the fact that the large number of events without CRV variables
was assigned a “dummy” value of -999,999, and so the natural correlations between variables
was washed out. This phenomenon ended up producing suboptimal results, and so a change
was necessary.

Figure 12: The correlation of variables for a mixture of the CRY3 and CE/Noise dataset.

Every dataset was then split in two, known as the “noCRV” and “CRV” datasets, with
their corresponding models named the same. The “noCRV” dataset is that without CRV
variables, and the “CRV” dataset is the one with CRV variables. An event without CRV
variables, for example, could be an electron produced by a muon that went through the
TS-Hole, depicted in Fig. 3, as the CRV does not cover there.
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Figure 13: Correlations for the CRV (left) and noCRV (right) data, which consists of the mixed
CRY3 and CE/Noise data from Fig. 12.

The attributes in question are relatively uncorrelated with each other, as seen in Fig. 13,
as the correlation from CRV variables existing did not override the existing natural corre-
lations within the CRV data. This was the goal for these variables, as when variables are
correlated, one or more variables are either unnecessary or even harmful to model general-
ization. The reason for this is that the model should generalize as much as possible, if there
are two variables that offer similar information, it tends to make the model less generalize-
able. This would be because that attribute would tell the same information as another, yet
be weighted similarly, leading to a weaker ability to generalize without making the model
unnecessarily deep/wide. Overall, the two types of events were better encapsulated using
two different models than by using one overarching model.

However, the noCRV data had few useful variables to discriminate between Cosmic and
CE/Noise events, as can be seen in the low correlation coefficients with the cosmic status
of the attributes in Fig. 14. This is a recurring theme for the noCRV dataset, it is quite
difficult to discriminate between cosmics and CE events without CRV variables throughout
this study. Much of the classification power resides in the CRV data, as evidenced by the
much stronger correlations for that dataset in Fig. 14.

8.2 Data Cleaning and Separation

For a neural network, there need to exist three independent datasets: training, validation,
and testing. The training dataset trains the model, hence the name. The data in the training
set is entered into the model as it learns. The validation dataset is the dataset that the model
checks against at each training interval. The validation set serves as a sanity check for the
model within training, and the independence of this dataset is important to protect against
overtraining, which is defined in Section 8.3. The testing dataset is the dataset used for
testing the model after the training process is done. It is important that every dataset be
independent of one another, so that any machine learning model created isn’t simply looking
at the same data it was trained upon, as that would not test the model’s ability to generalize.

For all the data input into the model for training, validation, and testing, the data
were standardized such that the mean and the standard deviation of the data for each input
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Figure 14: The correlation between variables used and cosmic status. The top plot is for the CRV
data, and the bottom plot for the noCRV data. Correlation values vary from 0 to 1, with 0 being
no correlation, and 1 being a perfect correlation.

variable was 0 and 1, respectively. This was done so that each variable had the same numeric
weight assigned to it within the model’s weight matrices. An example of such is the difference
between the values for PE yield and Particle ID. While both are important variables, the
numeric values of the PE yield can reach into the thirties, while the Particle ID ranges from
0 to 1. These variables, if not normalized, would lead to a very wrong weight matrix within
the model.

Afterwards, the data were separated into events with and without CRV hits. The CRY3
and the CE/Noise dataset were treated separately for both cases, making 4 separate datasets
(CRY3 CRV, CRY3 noCRV, CE/Noise CRV, and CE/Noise noCRV). Then the common
datasets were merged, to make 2 datasets (CRV and noCRV) for usage in the training,
testing, and validation datasets.

For the CRV data, the CE/Noise sample had the Extended Momentum Cut applied to it,
while the CRY3 sample had loose cuts applied to it. The reason for this was that any of the
harsher cuts, such as the momentum cuts, severely decreased statistics for model training
since they would eliminate a large number of cosmic events. The cuts for the CE/Noise data,
however, still had good statistics after the cuts, and there was no point training the model
on events that it would never had to evaluate (because they would fail the cuts anyways).

A fraction of 80% of the CRY3 data went to training, with 20% going to validation.
None of the CRY3 dataset went to testing, as the CRY4 dataset made up the entirety of
the cosmic-ray portion of the testing data. A fraction of 60% of the CE/Noise data went to
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training, 20% to validation, and the other 20% to testing.
The CRY4 sample was purely used for testing. The reason for this was that the CRY4

sample is easier to test robustness on, due to the different light yield values and greater
statistics, and is also independent of the CRY3 sample, allowing for an unbiased analysis by
the model. The difference between the CRY3 and CRY4 datasets is minor as it only involves
the simulation of the shielding, and the input variables behave and act the same, so the
differences in the dataset are negligible.

The noCRV dataset, using the same dataset breakdown between training, testing, and
training as the CRV data, led to a problem, as there were a lot more CE events than there
were cosmic events. This led the model to predict everything as a CE event. As such, the
data processing for the noCRV dataset was slightly different. Due to the very low number
of cosmics without CRV variables that pass Loose Cuts, only Box Cuts were used for the
CRY3 dataset. Then, a subset of the CE/Noise events that passed the Extended Momentum
Cut, randomly sampled down to be of size 2 × size(noCRVcosmic set), was split up into the
same fractions from the CRV dataset in regards to ML training (60% to training, 20% to
validation), with the remainder sent to the testing sample. This made it such that the
number of events in the training and validation datasets was much more equal, about 1:1.2
CRY3:CE/Noise, as opposed to a much more unequal ratio. The data breakdowns for the
sizes of the training, testing, and validation data are depicted in Fig. 15 below.

Figure 15: The final datasize breakdown for the dataset

The size of the training sample was 335,939 events for the CRV model, and 2,148 events
for the noCRV model. The size of the validation sample was 106,985 events for the CRV
model, and 628 events for the noCRV model. The breakdown of what data samples made
up each dataset is in Fig. 16.
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Figure 16: The different data samples and how they fit into the datasets used for the study.
Blue marks the CRY3 sample, red the CE/Noise sample, and green the CRY4 sample. Simulated
samples are rectangles, subsets of those samples are ovals, and the model datasets are yellow
diamonds. Arrows indicate where the datasets were distributed to.

8.3 Model Parameters and Metric Definitions

The batch size is arguably the most important hyperparameter, or an attribute of the
machine leaning model itself, of any given machine learning model, because the batch size
directly affects how the weight matrices are updated. The batch size defines the number of
data points that the model sends through before updating its weight matrices during training
[8].

The epoch number is the number of times the model will run through the entire dataset
when training. An epoch contains one or more batches, and models can have a large number
of epochs [8]. Usually, however, the number of epochs (if one wants to prevent overtraining),
correlates with the batch size (the smaller the batch size, the smaller the number of epochs).
The number of epochs to train for can be manually changed, but the number is usually
set to something very high and set to stop before the number of epochs set by the user
(called early-stopping) due to a given user-defined metric. Checking model metrics for early
stopping happens either at the beginning or at the end of every epoch.

For example, suppose there is a training sample of T events, with a batch size of B, and
a number of epochs E. The dataset will be divided into a number of batches defined by Eq.
6 below. If the training sample size and the batch size do not evenly divide, then the final
batch will simply be the remainder of data samples [8]. Each epoch will then have that
number of updates to the weight matrices per epoch. The number of epochs trained for is
purely up to the user.
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BatchNumber =

⌈
T

B

⌉
(6)

There are two complimentary model metrics that are displayed when talking about train-
ing data: loss and accuracy. Loss is the metric that the machine learning model is trying
to minimize, and is usually based in some form of entropic calculation. There are many
different loss functions that work best depending on what one is trying to achieve with the
machine learning model they are using; binary cross-entropy is good for binary classification,
the type of classification being done for the CRV. It is defined as:

Loss = − 1

N

N∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)), (7)

where yi is the label of the event (1 if the event is a cosmic-ray muon induced event, 0
otherwise), p(yi) the calculated output of the machine learning model for that event (which
is between 0 and 1, and thus treated as a probability), and N the number of events in the
dataset. On the other hand, accuracy is simply the number of events that the model gets
right after the internal model matrices/parameters have been updated for each epoch after
setting the classification cutoff at 0.5 (see Section 10.1 for a discussion of the classification
cutoff). While accuracy has little to nothing to do with the actual training of the machine
learning model, it is a more intuitive metric than loss, and is therefore usually included when
analyzing model training.

Overtraining occurs when the model cannot generalize to data outside of those in the
training dataset, yet performs quite well on the training set itself. The hallmark of an
overtrained model is when the model improves its accuracy on the training dataset at the
expense of the validation dataset [9]. An analogy for machine learning overtraining is fitting
a high-order polynomial order to a curve. While the polynomial definitely fits the data
better, it doesn’t extend itself to data points away from the dataset.

The hallmark of overtraining is an improvement to the metrics of the training dataset
with a simultaneous worsening of the metrics to the validation dataset, as shown in Fig. 17
below. This is also one of the reasons for good, independent validation and testing datasets
- they have to be properly independent from the training sample in order to be a good
indicator of performance.

8.4 Optimizing Model Parameters

The hyperparameters of batch size, model width, and model depth were varied using a
grid search, and the best option selected. A grid search entails looking through all possible
combinations of given hyperparameters, where the selected choices are supplied manually.
The choice of “best” model is determined by its model accuracy on the validation dataset
at the end of training.

A larger batch size tends to wash out generalizations in the model [10], so a smaller batch
size relative to the size of the dataset was chosen. However, a batch size that is too small
would be just as bad, as given the relatively small size of the neural network, the network
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Figure 17: The training metrics from an older version of the noCRV model which was overtrained.
The left plot depicts model accuracy vs epoch, and the right model loss vs epoch. Note the
decreasing efficacy of the model with regards to the validation dataset, while the training dataset
continues to improve.

would be overtrained within just a single epoch, making for a worse model overall. As such,
a middle ground was chosen, which was reflected in the final choices made in Section 8.8.

Dropout within a model entails each neuron within a layer, per epoch, having a chance
to be randomly “dropped out”, or not included, in the training of the model, with the rate
of this dependent on the dropout rate selected for each layer. For instance, a dropout rate of
0.2 would mean a random fifth of the neurons in each layer would be selected and dropped
out. A rendition of what dropout entails is depicted in Fig. 18.

Dropout during training helps to prevent overfitting in the model, as it forces the model
to consider different types of correlations, rather than falling into the trap of relying too much
on one attribute or neural network combination thereby helping its ability to generalize [11].

The model structure that was chosen was a width of 4 times the number of input variables,
with 8 hidden layers (layers that are neither input nor output layers) no matter the number
of input variables. Inside of the middle 6 hidden layers there was a dropout rate of 0.2. The
first hidden layer did not have dropout functionality because it was directly connected to
the input layer, and the last one did not have dropout because it connected directly to the
output. Both of these layers should have all their neurons intact as the connections between
the input and output layers are too important to ever be dropped out. The dropout rate of
0.2 helped to prevent overfitting [11] by the model, yet was not so large as to make training
overly difficult due to excessive dropout. Different rates between 0.2 and 0.5 were tested,
with 0.2 being selected as the best. However, model performance across all these rates was
similar, indicating a level of stability within the model. The batch size chosen for the CRV
model was 100 events per batch, which was both small enough to help with generalization
and large enough to prevent overtraining within epochs. The batch size chosen for the
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Figure 18: A rendition of what dropout entails. The first and third layers have a dropout rate of
0.4, and the second layer a dropout rate of 0.6 [11].

noCRV model was 10, as the training sample size was much smaller for that sample.
The variables used for each model are detailed in Table 4, and a graphical rendition of

the two models in Fig. 19.

CRV Model Variables noCRV Model Variables
Downstream number of hits Downstream number of hits

Particle ID Particle ID
Track quality Track quality

Starting z-value of track Starting z-value of track
Distance from z-axis Distance from z-axis

Recorded CRV z position N/A
Recorded CRV ∆T N/A

PE Yield of primary scintillators N/A

Table 4: A table of variables used for the models. The CRV model used 3 more variables than
the noCRV model.
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Figure 19: The models for the CRV(left) and the noCRV(right) models. The red dots represent
dropped out neurons, as a representation of how many neurons would be dropped out. The input
is on the left and output on the right for each model. Note that the first and last hidden layer do
not have dropout functionality. The dropout rate for the hidden layers with dropout is 0.2.

9 Training the Model

9.1 The Alpha Metric

Neural networks consist of weight matrices for every neuron, as a way to actually evaluate
the inputs they are given. These matrices can be analyzed to provide insight into the model
itself, without needing access to the training data [12].

The α metric is an exponent determined by a model’s weights such that the spectral
density of the weight matrices, ρ(λ), is approximately equal to λα for a given layer, where
λ is an eigenvalue of the layer’s weight matrix. It can effectively be a measure for data
correlation [13]. This power law exponent’s “healthy range” is usually between 2 and 6,
where smaller is better (when within that range), and indicates a better correlation for that
layer.

The α metric was also used during training, as an α value less than 2 corresponds to
the overtraining of a layer. As such, the average α over the every layer of the model was
examined at the end of every epoch, and if the value of αavg was less than 2.1, training would
stop, as the model was close to being overtrained. The reason for stopping at 2.1 as opposed
to exactly two was to provide a safety buffer. The analysis of this metric was done using the
“WeightWatcher” package for Python [14].

However, αavg is not a perfect metric. The overtraining plot from section 8.3 had an αavg
value greater than 2, but was still clearly overtrained. While α serves as a good warning for
overtraining, a manual examination is still always required.
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9.2 Training Procedure

Both the noCRV and CRV models were trained on the CRY3 cosmic dataset alongside
the training/validation subset of the CE/Noise sample, as stated before. The batch sizes
were also the same as stated before for each of the models, and so were the training and val-
idation dataset sizes and procedures for creating them. The optimizer used was the “adam”
optimizer, which is a standard optimizer from the Keras package, and the kernel was initial-
ized to a normal distribution (the weight matrices in the model were initially a randomized
normal distribution) [7]. The training set accuracy/loss, validation set accuracy/loss, and
alpha over the course of model training for both models is depicted in Fig. 20 and Fig. 21.

Figure 20: The accuracy and loss for the CRV model on the left, and the noCRV model on the
right. Vertical axes are shared for both rows. Note the higher loss and lower accuracy value for the
CRV model as opposed to the noCRV model.
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Figure 21: The average α over all layers of both models versus epoch.

The small batch size of the CRV model, relative to the size of the input dataset, allows
for a much smaller number of epochs, whereas the batch size of the noCRV model relative
to the size of its input dataset was larger, and is reflected in the increased number of epochs
in Fig. 20 for the noCRV model.

The relatively smooth curve towards an alpha value of two for both models also reflects
a better convergence towards a good model in Fig. 21, as opposed to a jagged curve[12].
This is because since lower alpha correlates to better correlation for the weight matrices,
a smoother curve means that the matrix was correlated well through training, and didn’t
encounter many hitches along the way.

10 Model Predictions

10.1 Prediction procedure

The testing data, which was separated into the entire CRY4 dataset and the testing
subset of the CE/Noise dataset, was scaled using the same values used to normalize the data
from Section 8.2 to having a mean of 0 and a standard deviation of 1. These scalers put the
testing data in the same relative scale, meaning that while the testing data would not have
a mean of 0 and a standard deviation of 1, the data would be relative in those metrics to
the data the model was trained on.

Afterwards, Loose Cuts were applied to the CRY4 dataset. This was done to conserve
on computing resources, as the entire CRY4 dataset was quite large, and the loose cuts cut
eliminated a large number of the events in the dataset, yet did not affect the final outcome.
This step was not done for the testing portion of the CE/Noise dataset, as it had already
passed Extended Momentum Cuts, as stated in Section 8.2. Predictions proceeded for both
datasets after this step.

All of the predictions from the model are between 0 and 1, and represent the model’s
confidence that an event was a cosmic event. For example, if an event that the model
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analyzes is output at a value of 0.64, the model believes that there is a 64% chance it is
a cosmic event. A cutoff has to then be defined, and everything greater than the cutoff is
classified as a cosmic, and everything less than the cutoff was classified as a CE.

10.2 CRY4 Sample Predictions

Figures 22 through 27 display each light yield in the CRY4, or cosmic, sample. They will
all have the following:

1. An overall prediction plot of events input into the CRV and noCRV models before and
after the Extended Momentum Cuts.

2. A breakdown for events input into the noCRV model before and after the Extended
Momentum Cuts, split between high and low energy muons.

3. A breakdown for events input into the CRV model before and after the Extended
Momentum Cuts, split between high and low energy muons, alongside a zoomed in
portion to help determine behavior in the region where a strict cutoff would be placed
(see Section 11.3 for a discussion on the classification cutoff). This zoomed in portion is
differentiated between events that exist after Loose Cuts, and those after the Extended
Momentum Cut.

The predictions for the CE/Noise sample are also plotted at the end in Fig. 28.
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Figure 22: Predictions for the subset of the CRY4 sample that has a lightyield of 7,000. “Lo” (in
blue) indicates low energy muons, and “Hi” (in orange) indicates high energy muons for the plots
in the middle and bottom.
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Figure 23: Predictions for the subset of the CRY4 sample that has a lightyield of 9,000. “Lo” (in
blue) indicates low energy muons, and “Hi” (in orange) indicates high energy muons for the plots
in the middle and bottom.
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Figure 24: Predictions for the subset of the CRY4 sample that has a lightyield of 11,000. “Lo”
(in blue) indicates low energy muons, and “Hi” (in orange) indicates high energy muons for the
plots in the middle and bottom.
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Figure 25: Predictions for the subset of the CRY4 sample that has a lightyield of 13,000. “Lo”
(in blue) indicates low energy muons, and “Hi” (in orange) indicates high energy muons for the
plots in the middle and bottom.
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Figure 26: Predictions for the subset of the CRY4 sample that has a lightyield of 15,000. “Lo”
(in blue) indicates low energy muons, and “Hi” (in orange) indicates high energy muons for the
plots in the middle and bottom.
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Figure 27: Predictions for the subset of the CRY4 sample that has a lightyield of 17,000. “Lo”
(in blue) indicates low energy muons, and “Hi” (in orange) indicates high energy muons for the
plots in the middle and bottom.
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Figure 28: Predictions for the testing subset of the CE/Noise dataset for both the CRV and
noCRV models. Blue indicates the prediction values of the CRV model, and orange the prediction
values of the noCRV model.

11 Prediction Analysis

11.1 Calculating the Cosmic-Ray Muon Induced Background and
Deadtime

The cosmic background was calculated using the procedure described in Section 5.4.
However, it was not done after the Kinematical Cuts with the Physical Momentum Cut, but
instead the Kinematical Cuts with the Extended Momentum Cut, in order to increase the
statistics of the sample. In order to correct the background to the actual livetime of the
experiment, the cosmic background was scaled by Eq. 9 below, which allowed for a ballpark
measurement of what would occur during the actual experiment while maintaining high
statistics.

scale =
# of events remaining after extended momentum cut

# of events remaining after physical momentum cut
, (8)

bkgcorrected =
bkg

scale
, (9)

∆bkgcorrected =
∆bkg

scale
(10)

Whenever the cosmic background is said to be “normalized”, it has been both scaled and
measured relative to the livetime of one run of the Mu2e experiment, as detailed in Section
5.4.

The deadtime for the sample was calculated using the Physical Momentum Cut the same
way as Section 5.3.
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11.2 The Performance of the Two Models

The true positive rate compared to the false positive rate of the model is shown in the
Receiver Operating Characteristic (ROC) curves in Fig. 29. The true positive rate is the
rate at which cosmic-ray muon events are correctly identified, and the false positive rate is
the rate at which CE/Noise events are identified as cosmic-ray muon events. Their formulas
are given below:

True Positive Rate =
TC

TC + FCE
, (11)

False Positive Rate =
FC

FC + TCE
, (12)

where TC is the number of cosmic-ray muon events correctly identified by the model, FCE
the number of cosmic-ray muon events misidentified as CE/Noise events by the model, FC
the number of CE/Noise events misidentified as cosmic-ray muon events by the model, and
TCE the number of CE/Noise events correctly identified by the model. A ROC Curve varies
the cutoff value, and calculates the false positive rate and determines the true positive rate
from that.

The AUC (Area Under the Curve) should be as close to 1 as possible, since an AUC of 1
indicates 100% accuracy with no false positives. It is a good indicator for model performance,
as it shows how many false positives a model requires for a given sensitivity.

Figure 29: The ROC curves for both models, with the CRV model on the left and the noCRV
model in the middle. The ROC curve for the models combined is on the right.

The performance of the noCRV model is significantly worse, as pointed out in section
8.1. None of the variables in the noCRV model really correlate to cosmic status, making
prediction quite difficult. The role of the noCRV model was simply to separate at least
some of the cosmic events from the rest, not necessarily to optimize the separation. The real
classification power came from the CRV model, where a majority of the cosmic muons were.

11.3 Providing a Classification Cutoff

The value of the classification cutoff is the largest factor in determining whether an event
is a cosmic muon or a CE, as it is the final determining cut for the ML Veto Algorithm.
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The ROC Curve does not provide information on the cosmic-ray muon induced back-
ground, however, and so the direct relationship between the classification cutoff and the
cosmic-ray muon induced value was investigated. The plots below depict the cosmic-ray in-
duced background and deadtime for varying cutoffs, and were used to determine what cutoff
to use. Since the goal was to be either consistently the same or better than the CRV Time
Window Veto Algorithm, in terms of cosmic background and deadtime, the cutoff determi-
nation was made using these metrics. Figures 30 through 35 display the cosmic-ray muon
induced background versus the cutoff value, with the uncertainty produced by Eqns. 5 and
10. Figure 36 displays the deadtime versus the cutoff, with the uncertainty produced by Eq.
3.

Figure 30: The cosmic-ray induced background versus prediction cutoff value for a light yield of
7,000. The only cutoff value that was changed was the cutoff for the CRV model. The cutoff for
the noCRV model was kept at 0.5.

Figure 31: The cosmic-ray induced background versus prediction cutoff value for a light yield of
9,000. The only cutoff value that was changed was the cutoff for the CRV model. The cutoff for
the noCRV model was kept at 0.5.
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Figure 32: The cosmic-ray induced background versus prediction cutoff value for a light yield of
11,000. The only cutoff value that was changed was the cutoff for the CRV model. The cutoff for
the noCRV model was kept at 0.5.

Figure 33: The cosmic-ray induced background versus prediction cutoff value for a light yield of
13,000. The only cutoff value that was changed was the cutoff for the CRV model. The cutoff for
the noCRV model was kept at 0.5.

Figure 34: The cosmic-ray induced background versus prediction cutoff value for a light yield of
15,000. The only cutoff value that was changed was the cutoff for the CRV model. The cutoff for
the noCRV model was kept at 0.5.
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Figure 35: The cosmic-ray induced background versus prediction cutoff value for a light yield of
17,000. The only cutoff value that was changed was the cutoff for the CRV model. The cutoff for
the noCRV model was kept at 0.5.

Figure 36: The deadtime versus prediction cutoff value. The only cutoff value that was changed
was the cutoff for the CRV model. The cutoff for the noCRV model was kept at 0.5.

The final classification cutoff was crafted in such a way that the cosmic background would
be minimized. Since the vast majority of the cosmic-ray muon events are handled by the
CRV model, and a large number of CE/Noise events are handled by the noCRV model, the
cutoff was established at 0.5 for the noCRV model. Other cutoff values for the noCRV model
were explored, but it was settled that a value of 0.5 was the best.

For the CRV model, the cutoff value was set to match or improve upon the CRV Time
Window Veto in terms of performance with regards to the cosmic-ray induced background.
The three cutoffs looked at in depth were at values of 0.001, 0.005, and 0.010. A cutoff
greater than 0.010 resulted in a cosmic background that was too large.

12 Physical Metrics

The output of both the noCRV and CRV models were combined to form one output
dataset, which was what was analyzed for this study. This combined output of these two
models formed the “ML Veto” seen moving forwards.
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12.1 Cosmic Background

The ML Veto performs consistently better than the CRV Time Window Veto at the
cutoff value of 0.001 in terms of both cosmic-ray induced background and deadtime. For
every light yield except the highest at 17,000, the other two cutoff values selected does either
better or within one ∆ of the CRV Time Window Veto, with ∆ being calculated using Eqs.
5 and 10. The cosmic-ray induced background vs light yield for the three cutoffs alongside
the CRV Time Window Veto are plotted in Fig. 37 below.

Figure 37: The cosmic-ray induced backgrounds for different light yields. The noCRV model
cutoff was kept at 0.5, with only the CRV cutoff changing.

One notable trait of the ML Veto is its success in regards to low and high energy muons.
The ML Veto often performs worse than the CRV Veto for high energy muons for the higher
cutoff values at higher light yields, and the ML Veto performs consistently better than the
CRV Time Window Veto for low energy muons at that scale. This can be seen in the plots
in Appendix B.

There is also a structure evident in the prediction distributions, as seen by the peaks
between 0 and 1 for the distributions of the CRY4 dataset in Section 10.2. It is not currently
clear why this is, but it is a point of further study.

12.2 Deadtime

The deadtimes for the CRV Time Window Veto and the ML Veto Cutoff values are
detailed below in Table 5 and Fig. 38. These deadtimes are over the testing subset of the
CE/Noise dataset with no separation between beam intensities, or the number of protons
per pulse from the production solenoid.
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Method Deadtime
CRV Time Window Veto 0.09419 ± 0.00225
ML Veto (Cutoff=0.001) 0.05775 ± 0.00229
ML Veto (Cutoff=0.005) 0.04211 ± 0.00231
ML Veto (Cutoff=0.010) 0.03271 ± 0.00233

Table 5: The deadtimes for the CRV Time Window Veto and the ML Veto.

Figure 38: The overall deadtime for the three different cutoffs of the ML Veto compared with that
of the CRV Time Window Veto over the entire testing portion of the CE/Noise dataset irrespective
of beam intensity.

No matter the cutoff value, including the extremely strict cutoff at a value of 0.001 for
the CRV model, the overall deadtime of the ML Veto performs much better than that of the
CRV Time Window Veto, as shown in Fig. 38.

In reality, the beam produced by the production solenoid will have a set beam intensity,
and Fig. 39 displays the deadtime for the ML Veto Algorithm versus the beam intensity.
The ML Veto has less deadtime than the CRV Time Window Veto for every beam intensity
except the lowest one. Even for the lowest beam intensity all the deadtimes are within each
other’s uncertainty bound.

There is a relatively large difference between the deadtime of the CRV Time Window
Veto and the ML Veto for every cutoff available. This difference can be explained the by
∆T distribution for the ML Veto versus the current CRV Veto in Fig. 40.
Unlike the CRV Time Window Veto, the ML Veto lets through a number of CE events that
are inside of the CRV Veto’s time window, while still identifying and vetoing enough cosmic
muons to remain relevant as a viable veto for the CRV itself, as displayed in Fig. 40 above.
This produces a much lower deadtime for the ML Veto, even at the strictest cutoff value
available.
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Figure 39: The deadtime of the ML Veto and CRV Time Window Veto versus the beam intensity.
Beam intensity is relative to the nominal value of 3.9× 107 protons per pulse.

13 Concluding Thoughts

13.1 Study Conclusion

This study is an investigation into whether a deep-neural network could perform better
than the current CRV Time Window Veto. The ML Veto performs either the same or better
than the CRV Time Window Veto in terms of both reducing the cosmic-ray muon induced
background and the deadtime. For the strictest cutoff of 0.001 for the ML Veto, both the
cosmic background and deadtime were improved upon at every light yield, which is very
promising for the future of using machine learning for the Mu2e CRV.

13.2 Further Study

There are unexplained behaviors in the neural network currently, and it would do well to
further study these behaviors. One such behavior is in the noCRV model’s predictions for
the CE Sample, where the entire prediction distribution never reaches zero, as shown in Fig.
28. Another such behavior is the structure in the predictions for the CRY4 sample in Section
10.2. There are peaks at certain values, and troughs at others in the prediction distribution
that are currently unexplained. Exploring the cause of these oddities in the distribution
would do much to help further understand how to optimize the machine learning model for
the CRV Veto. Behaviors like these need to be understood and looked into thoroughly before
moving forward.

Any model developed needs to be further tested for robustness and further tested against
other backgrounds, such as the DIO (muons which Decay In Orbit) background, and other
such backgrounds. Even though the cuts applied remove a large portion of these backgrounds,
it would still be pertinent to check. This would be the only way to actually beat the CRV
Time Window Veto, as the current veto algorithm is also optimized for these backgrounds.
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Figure 40: The ∆T distributions for the testing subset of the Noise/CE sample using different
vetoes and their cutoffs. The left plot is a distribution of all events that were identified as “not
CE”, or set to be vetoed, and the right plot a distribution of all events identified as a CE. Note
the increased number of Noise/CE events that are vetoed using the current CRV Veto (marked as
“CRV Veto” in the plots).

Similarly, it would possibly be prudent to see a machine learning model’s reaction to
changing the reconstruction thresholds: for instance, changing the threshold for a valid
muon track stub to 2/4 layers hit instead of 3/4, to allow for a higher efficiency. This could
help gain more cosmic-ray induced CEs, but may also backfire, so it would be an interesting
test to do in the future.

Currently the performance of the ML Veto, similar to the CRV Time Window Veto, is
very dependent on the light yield of the sample. This should be improved upon due to aging
concerns in the CRV (see Appendix A). Looking into methods making the machine learning
model more resilient towards changes in the light yield, possibly through removing the PE
yield from the model or other similar measures, is a point for further study.

It would also be prudent to look into different types of machine learning models, namely
LSTM (Long Term Short Memory) models, and SVM (Support Vector Machine) models.
CNNs (Convolutional Neural Networks) were tried in the past on images of events with-
out the reconstruction algorithm alongside numerics, and remain of interest to the Mu2e
Collaboration [5].
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Appendices

A Aging of the CRV

Over time the scintillators within the CRV will age; their light yield will decrease. This
aging has been happening at a faster rate than expected. This was studied in tandem with
the main focus of this study, as the light yield is an important factor in determining the
performance of the CRV veto. Over the course of about 2.5 years, the aging of different
types of production counters was measured. These aging values were temperature corrected,
following the equation below:

Icorrected = I(1−m(T0 − T )), (13)

where I is the input current, m the slope, T0 was 21 degrees C, the reference temperature,
and T the temperature recorded of the channel at the date.

The data was taken by a test counter, with data collected every month over two years.
The current produced by a source was recorded. It is directly proportional to the light yield,
and is a more easily measureable quantity, so that is what was used to determine the aging
rate.

Figure 41: The temperature-corrected aging rates of different channels. The aging rate is the
value of the fitted exponential.
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As the light yield of the CRV decreases, anything related to the CRV will have to adjust
to that accordingly, making aging an important issue for the Mu2e Collaboration.

B In-Depth Cosmic Background per Lightyield

The following plots are in-depth per cutoff breakdowns of Fig. 37 at cutoff values of
0.001, 0.005, and 0.010. All the uncertainties were determined using Eqs. 5 and 10. The
“CRV Veto” indicates the current CRV Time Window Veto Algorithm (which was the same
per light yield irrespective of the cutoff), and “ML Veto” indicates the ML Veto Algorithm
developed in the study. They all contain the following, moving from left to right.

1. The average cosmic-ray muon induced background versus the three cutoff values for
both low and high energy muon induced events. The CRV Time Window Veto Al-
gorithm performance is also given as a straight line with uncertainty (as it is not
dependent on the machine learning cutoff point.)

2. The cosmic-ray muon induced background versus the three cutoff values for high energy
muon induced events. The CRV Time Window Veto Algorithm performance is also
given as a straight line with uncertainty (as it is not dependent on the machine learning
cutoff point.)

3. The cosmic-ray muon induced background versus the three cutoff values for low energy
muon induced events. The CRV Time Window Veto Algorithm performance is also
given as a straight line with uncertainty (as it is not dependent on the machine learning
cutoff point.)

As can be seen in the plots, the ML Veto performs consistently either the same or better
than the Time Window Veto in regards to the background due to low-energy muon induced
background, and always performs either the same or better than the Time Window Veto at
the lowest cutoff value for both the overall and high-energy muon induced background.

Figure 42: In-depth breakdowns of the cosmic background using different cutoffs, as well as the
CRV Time Window Veto, for elements of the CRY4 sample with a light yield of 7000.
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Figure 43: In-depth breakdowns of the cosmic background using different cutoffs, as well as the
CRV Time Window Veto, for elements of the CRY4 sample with a light yield of 9000.

Figure 44: In-depth breakdowns of the cosmic background using different cutoffs, as well as the
CRV Time Window Veto, for elements of the CRY4 sample with a light yield of 11000.

Figure 45: In-depth breakdowns of the cosmic background using different cutoffs, as well as the
CRV Time Window Veto, for elements of the CRY4 sample with a light yield of 13000.

50



Figure 46: In-depth breakdowns of the cosmic background using different cutoffs, as well as the
CRV Time Window Veto, for elements of the CRY4 sample with a light yield of 15000.

Figure 47: In-depth breakdowns of the cosmic background using different cutoffs, as well as the
CRV Time Window Veto, for elements of the CRY4 sample with a light yield of 17000.

C The Code for Various Cuts

The following section contains the code forms of the cuts described in Section 5.2. When-
ever a cut builds off of a previous one, there is an addition sign and the name of that set of
cuts. Variable definitions can be found in Table 2, however some variables are not in Table
2 and are defined in this section.

Loose Box Cuts

cut_lbox = [

"(deent_td > 0.577350)",

"(deent_td < 1.000)",

"(deent_d0 > -80)",

"(deent_d0 < 205)",

"((deent_d0 + 2./deent_om) > 450)",

"(is_triggered)"

]

The variable “is triggered” checks for whether an event was triggered at all.
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Loose Cuts

cut_loose = [

"(dequal_TrkQual > 0.8)",

"(dequal_TrkPID > 0.95)",

"(ue_status <= 0)"

] + cut_lbox

The variable “ue status” checks whether the event is upstream, with a value less or equal to
0 indicating it is not, and a value greater than 0 indicating that it is. The Loose Cuts build
off of the Loose Box Cuts, as evidenced by the addition in the code.

Box Cuts

cut_box = [

"(de_status > 0)",

"(deent_td > 0.577350)",

"(deent_td < 1.000)",

"(deent_d0 > -80)",

"(deent_d0 < 105)",

"((deent_d0 + 2./deent_om) > 450)",

"((deent_d0 + 2./deent_om) < 680)",

"(is_triggered)"

]

Quality Cuts

cut_qual = [

"(dequal_TrkQual > 0.8)",

"(dequal_TrkPID > 0.95)",

"(ue_status <= 0)"

] + cut_box

Kinematical Cuts - Extended Momentum Cut

cut_extmom = [

"(deent_mom > 100)",

"(deent_mom < 115)"

] + cut_qual

Kinematical Cuts - Physical Momentum Cut

cut_phymom = [

"(deent_mom > 103.85)",

"(deent_mom < 105.1)"

] + cut_qual
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CRV Time Window Cut

crv_time = """( ((-de_t0 + crvinfo__timeWindowStart) > 50)

OR ((de_t0 - crvinfo__timeWindowStart) > 150.0))"""

The CRV Time Window Cut is checking for whether ∆T = TimeCRV − TimeTracker is both less
than 50 and greater than −150 ns. TimeCRV is represented by “crvinfo timeWindowStart”,
and TimeTracker is represented by “de t0.”
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