
Stock Trading with Reinforcement Learning:

Average Reward Agent and Alpha Preservation

Wenyao Zhou
University of Virginia,

Mathematics and Computer Science, B.A.
wz8ry@virginia.edu

Distinguished Major Thesis in Computer Science

Abstract

This thesis investigates the application of reinforcement learning (RL) in stock trading using

historical market data for 30 Dow Jones component stocks. We make two contributions. The first

is to identify and mitigate a defect of the commonly used discounted total reward-based solu-

tions. Namely, the performance of those solutions heavily depend on the selection of the discount

factor but there is no discount factor that can consistently perform well across different settings.

We instead propose average-reward-based solutions, which consistently perform well and do not

have the discount factor to tune. The second is to identify the positive effect of bootstrapping

in alpha preservation. In our average-reward-based solutions, we demonstrate that it is possible

to enhance the agent’s resilience to abnormal market incidents (i.e., alpha preservation), such

as the 2020 stock market crash, by increasing the degree of bootstrapping. Overall, this thesis

underscores the potential of average-reward RL in stock trading for both efficiency and strategic

alpha preservation during market anomalies.

Keywords: Reinforcement learning; Average reward; Stock trading; Alpha preservation; Market anoma-

lies; Bootstrapping

1



2 W. Zhou

1. Introduction

In the quest to mimic human decision-making processes and learning behaviors, Reinforcement

Learning (RL) has emerged as a pivotal area of study within the broader field of artificial intel-

ligence. RL is predicated on the principle of interaction between an agent and its environment,

where the agent learns to make decisions by performing actions and receiving feedback in the

form of rewards. This learning paradigm is distinct from supervised and unsupervised learning,

as it focuses on sequential decision-making and learning from the consequences of actions, rather

than from direct instruction or finding hidden patterns (Szepesvari, 2010).

As RL has evolved, the integration of neural networks has led to the development of Deep Rein-

forcement Learning (DRL), a subfield that combines the decision-making power of RL with the

pattern-recognition capabilities of deep learning. DRL has remarkably advanced the frontiers of

research in control problems across various domains (Mnih et al., 2013; Mahmood et al., 2018;

Silver et al., 2016), setting new benchmarks for performance and adaptability. In this thesis, we

explore the application of DRL within the financial sector, specifically in stock trading.

1.1 DRL in stock trading

RL is distinguished from other fields of machine learning by its focus on learning optimal policies

through trial-and-error interactions with a dynamic environment, a concept that is inherently

aligned with the decision-making processes in financial trading. As a result, investment science

is a promising area where DRL’s capabilities can be harnessed. By leveraging complex histor-

ical data and stimulating countless trading scenarios, the DRL approaches demonstrate major

advantages in portfolio scalability with reasonable computational effort, and independence from

the investment model (Buehler et al., 2019). Recently, extensive studies have used various DRL

algorithms to train trading agents, conducted trading experiments on daily close prices of stocks,



Stock Trading with Reinforcement Learning 3

and reported high-than-market-average rates of returns (Guan and Liu, 2022; Liu et al., 2022;

Yang et al., 2020; Li et al., 2019).

The majority of these studies define the step reward as the daily change in portfolio value and

used discounted-reward-based algorithms, such as Deep Q Learning (DQN, Mnih et al. (2013))

and Proximal Policy Optimization (PPO, Schulman et al. (2017)). Among the hyperparameters

of the models, the discounting factor γ is of particular importance, as it influences how future

rewards are valued relative to immediate rewards. However, the use of “naive but classical values”

can lead to sub-optimal policies (Perotto and Vercouter, 2018). Works by Pitis (2019) and Kim

et al. (2022) have also highlighted the performance limit of using a constant discounting factor.

It is thus a major challenge to choose suitable values for the discounting factor.

In this thesis, we propose a novel approach to this challenge in stock trading by considering

a portfolio’s rate of return as an aggregate measure of daily changes instead of a discounting

measure. Since most studies have used rate of return as the key performance benchmark (Guan

and Liu, 2022; Liu et al., 2022; Li et al., 2019), we hypothesize that average-return reinforcement

learning (Tadepalli and Ok, 1998; Wei et al., 2021; Ma et al., 2021) is an appropriate approach

to train stock trading agents. The family of average-return reinforcement learning algorithms

eliminates the use of discounting factors, thus reducing the complexity of hyperparameter tuning.

In this thesis, we provide a comparison between the empirical performance of average-reward and

discounted-reward reinforcement learning agents using historical market data.

1.2 Alpha preservation

Furthermore, machine learning models often show susceptibility to abnormal training data (Ev-

timov et al., 2017; Jain et al., 2020), and reinforcement learning is no exception. Stock trading is



4 W. Zhou

a time-driven task that requires constantly updating the model’s training data as time proceeds.

The agent can receive abnormal training data in the event of market anomalies, such as the 2020

Stock Market Crash that began in late February and spanned the entire March. We observe that

the agents can demonstrate a variant of catastrophic forgetting problem (Kemker et al., 2018) in

such events, as they forgo the learned trading strategy, adjust to the abnormal market pattern,

and perform poorly when the market resumes to normality. Typical solutions to catastrophic

forgetting require extensive re-design of the algorithm (Kirkpatrick et al., 2017), but in the task

of stock trading, Yang et al. (2020) have proposed and tested an ensemble strategy where when

the market volatility index passes a given threshold, the agent performs a straightforward loss-

cutting strategy. The prominent performance of this ensemble strategy with even the simplest

all-sell strategy highlights the effectiveness of human intervention in market crashes. Therefore,

in this thesis, we aim to provide an uncomplicated way to delay catastrophic forgetting to allow

buffer time for human traders to make adjustments.

In ensuring this delayed shift in model behavior, we effectively preserve the agent’s ability to make

a profit in a normal market after a considerable amount of abnormal market data is added to

the training set. We describe the agent’s profitability with the alpha in the Capital Asset Pricing

Market (CAPM) model (Sharpe, 1964), the most popular models in investment science (Kumar et

al., 2023). The alpha coefficient describes the excess rate of return the portfolio makes, relative to

the expected return from its risk level. Existing studies in protecting the trading strategy’s alpha

against volatile market conditions have focused primarily on conventional mean-variance methods

(Sorensen et al., 2004), whereas we aim to present a novel DRL approach to alpha preservation.

We will empirically compute the alphas under normal market conditions using agents’ strategies

trained using data before and after the market crash to evaluate the agents’ ability to delay

catastrophic forgetting.



Stock Trading with Reinforcement Learning 5

2. Backgrounds

2.1 MDP setup and value functions

We will model stock trading as a Markov decision process (MDP). We consider an infinite-horizon

MDP (Puterman, 2014) with a finite state space S, a finite action space A, a reward function

r : S × A → R, a transition function p : S × A× S → [0, 1], and a discount factor γ ∈ [0, 1]. We

begin with the more popular setup, the discounted-reward MDPs with γ < 1, and we will discuss

the average-reward MDPs with γ = 1 later.

Let π : S × A → [0, 1] denote a stochastic policy of an agent. At each time step t, the agent

at state st ∈ S chooses an action at ∈ A according to π, so at ∼ π(· | st). A reward Rt+1 :=

r(st, at) is then emitted, and the successor state st+1 is sampled from p(· | st, at). Let τ denote

a trajectory (s0, a0, s1, a1, . . .), and τ ∼ π denote that the distribution of trajectories depends on

π : s0 ∼ d0, at ∼ π(· | st), st+1 ∼ p(· | st, at).

Under the discounted reward criterion with γ ∈ [0, 1), the agent aims to optimize the policy π to

maximize a normalized expected discounted long-term return

ηπ,γ := (1− γ)Eτ∼π

[ ∞∑
t=0

γtRt+1 | s0

]
. (2.1)

We define the state value function V : S → R and the action-state value function Q : S ×A → R,

also known as the Q-value, as

Vπ(s) := Eτ∼π

[ ∞∑
t=0

γtRt+1 | S0 = s

]
,

Qπ(s, a) := Eτ∼π

[ ∞∑
t=0

γtRt+1 | S0 = s, a0 = a

]
.

(2.2)

The estimations for V and Q are usually initiated as 0 and stored in an array, then updated

through the training process. There are many methods for the agent to adjust its estimated state



6 W. Zhou

value Vπ(s) during training. One of them is Temporal Difference learning with parameter lambda

(TD(λ).

2.2 TD and GAE with lambda

To begin with, we present the formulation of TD(λ) (Sutton, 1988). We define the eligibility trace

for state s ∈ S at time t ̸= 0 as

Et(s) := γλEt−1(s) + 1st=s, (2.3)

where the indicator function 1st=s = 1 if st = s, and 0 otherwise. Additionally, for all s ∈ S,

E0(s) = 0. In learning, Et(s) is updated at each time step for all states. decaying with a factor

of γλ. Then, we define the TD error at time t as

δπ,t := Rt+1 + γVπ(st+1)− Vπ(st), (2.4)

which calculates the difference between the observed reward plus the discounted value of the next

state and the value of the current state. At each training time t, the agent updates its estimate

for the state value function by

Vπ(st) = Vπ(st) + αδπ,tEt(st), (2.5)

where α ∈ (0, 1) is the learning rate.

In TD(λ), if λ = 0, then the algorithm reduces to a one-step temporal difference method, and the

value function is updated based solely on the immediate reward and the value of the next state

Vπ(s) = Vπ(s) + α[Rt+1 + γVπ(st+1)− Vπ(st)].

The updated value demonstrates low variance, but high bias under TD(0), since the temporal

difference does not reflect the consideration for all future rewards.



Stock Trading with Reinforcement Learning 7

If λ = 1, then the algorithm would execute until the end of the episode, and then update the

value of the current state, effectively reducing the algorithm to a Monte Carlo simulation. The

rule for updating the state value function in TD(1) is

Vπ(s) = Vπ(s) + α[Gπ,t − Vπ(s)],

where Gπ,t is the return at time step t defined as

Gπ,t :=

∞∑
ℓ=0

γℓRt+ℓ+1. (2.6)

In TD(1), the update accounts for all future rewards, leading to lower bias from the true value.

However, the variance in the update is high as it is the sum of many estimates.

An intermediate λ value thus provides a balanced blending of both methods, with higher λ

leading to greater proximity to Monte Carlo and lower λ leading to greater proximity to temporal

difference. The choice of λ thus provides a trade-off between bias and variance.

The generalized advantage estimator (GAE(λ)) is an extension of the TD(λ) approach specifically

tailored to the needs of policy gradient methods (Schulman et al., 2015). The Proximal Policy

Optimization (PPO) algorithm, which we will discuss later in this thesis, uses GAE(λ) to make

updates. To illustrate the GAE(λ), we first define the advantage function Q : S × A → R in a

discounted reward problem:

Aπ(s, a) := Qπ(s, a)− Vπ(s). (2.7)

In this way, the advantage function Aπ(s, a) calculates how much better taking the particular

action a in state s is compared to the average reward across all actions in s, under policy π. If

the agent takes action at in state st at time step t, the GAE(λ) advantage estimation is then

AGAE(λ)
π (st, at) =

∞∑
ℓ=0

(γλ)ℓδt+ℓ, (2.8)



8 W. Zhou

where δπ,t+ℓ is the TD error at time step t+ ℓ, as defined in Eq.2.4. In practice, the estimation

is often computed recursively, using the formula

AGAE(λ)
π (st, at) = (γλ)AGAE(λ)

π (st+1, at+1).

Similar to TD(λ), there are two notable observations of Eq.2.8 when setting λ = 0 and λ = 1.

AGAE(0)(st, at) = δπ,t = Rt+1 + γVπ(st+1)− Vπ(st),

AGAE(1)(st, at) =
∑∞

ℓ=0 γ
ℓδt+ℓ =

∞∑
ℓ=0

γℓRt+ℓ+1 − Vπ(st) = Gπ,t − Vπ(st).

Like TD(λ), GAE(1) reduces the estimation to a Monte Carlo simulation. It has low bias re-

gardless of the accuracy of current Vπ but high variance due to the sum of terms. On the other

hand, GAE(0) reduces the estimation to the temporal difference. It has a much lower variance

but induces bias, as this estimation is contingent on the accuracy of the current Vπ.

2.3 Actor-critic framework

The Actor-critic methods consist of two main components: the actor and the critic. The actor

is responsible for selecting actions given the current state, while the critic evaluates the actions

taken by the actor by computing its expected return (Konda and Tsitsiklis, 2003). We make

slight modifications to the definitions we have provided so far and define

• Actor: The policy function, πθ(a | s), maps state to a probability distribution over actions.

The actor aims to learn a policy that maximizes the expected return.

• Critic: The value function Vϕ(s) estimates the expected return from s, which we have

defined as the discounted total future rewards. The critic’s role is to evaluate the quality of

the states encountered by the actor, providing feedback on the actor’s performance.

The new parameters θ and ϕ represent the parameters of the function approximator that models



Stock Trading with Reinforcement Learning 9

the value function. The actor approximator is often a neural network and the parameters θ are

adjusted in training to maximize the expected return. Meanwhile, the parameters ϕ are adjusted

to minimize the error in value estimates.

Naive policy gradient methods work by computing an estimator of the policy gradient and then

use a stochastic gradient ascent algorithm to find the optimal θ. The most commonly used gradient

estimator is obtained by differentiating the objective

LPG(θ) = Êt

[
log πθ(at | st) Ât

]
,

where Ât is the advantage estimate for st, at. However, Schulman et al. (2017) argues that empir-

ically, performing steps of optimization on this loss LPG often leads to destructively large policy

updates. They thus propose the PPO algorithm.

2.4 PPO for discounted reward

Proximal Policy Optimization (PPO) is a popular policy gradient method in reinforcement learn-

ing that seeks to improve the efficiency and reliability of policy updates. It is designed to take

multiple small steps in updating the policy using the same data, which helps in preventing large

destructive updates. The core idea of PPO is to maintain a balance between exploration and

exploitation by limiting the changes to the policy at each update. This is achieved through a

specially designed objective function using a clipping function that discourages large deviations

from the current policy (Schulman et al., 2017).

The clipped objective function for PPO is

L(θ) := Ê
[
min

(
πθ(at | st)
πθold(at | st)

Ât, clip

(
πθ(at | st)
πθold(at | st)

, 1− ϵ, 1 + ϵ

))]
, (2.9)

where ϵ is a hyperparameter to tune, and Ât = AGAE(λ)(st,at) is the advantage estimation that we

implement for our experiments. Given that the formulation of PPO through its clipped objective



10 W. Zhou

function effectively balances exploration and exploitation in discounted reward problems, we now

turn our focus to the average reward problems.

2.5 Average reward policy optimization

Using the same infinite-horizon MDP definitions in section 2.1, an average-reward agent aims to

maximize the long-run average performance under π

ηπ := lim
T→∞

1

T
Eτ∼π

[
T∑

t=0

Rt+1

]
. (2.10)

We use the setup by Ma et al. (2021) to define value functions as

Vπ(s) := Eτ∼π

[ ∞∑
t=0

(rat
(st+1, st)− ηπ) | S0 = s

]
,

Qπ(s, a) := Eτ∼π

[ ∞∑
t=0

(rat
(st+1, st)− ηπ) | S0 = s, a0 = 0

]
,

Aπ(s, a) := Qπ(s, a)− Vπ(s).

(2.11)

Unlike the discounted reward problem where ηπ needs not to be explicitly estimated using Eq.2.1,

here for each episode in the training process, we update the estimate of the long-run average

reward by

η̂ = (1− α)η̂ + α
1

N

N∑
n=1

Rn+1, (2.12)

where N is the number of time steps collected in the episode and α is the learning rate. The

original discounted GAE estimator is thereby modified to an average-reward variant as

Ât = Â(st, at) =

∞∑
ℓ=0

λℓδt+ℓ, (2.13)

where the new TD error is defined as

δt = Rt+1 − η̂ + V (st+1)− V (st). (2.14)

Then, the average-reward agent should aim to optimize its policy parameters θ to minimize

the same surrogate loss as the discounted-reward PPO in Eq.2.9, with the updated advantage

estimator in Eq.2.13.



Stock Trading with Reinforcement Learning 11

Similar to the discounted GAE(λ) estimator, we make two observations of Eq.2.13 with λ = 0

and λ = 1:
Âλ=0

t = δt = Rt+1 − η̂ + V (st+1)− V (st),

Âλ=1
t =

∞∑
ℓ=0

δt+ℓ =

∞∑
ℓ=0

Rt+ℓ+1 − η̂ + V (st+ℓ+1)− V (st+ℓ).
(2.15)

Therefore, similar to the discounted GAE(λ), the average reward advantage estimator also up-

dates Ât as the temporal difference when λ = 0, which has low variance but introduces bias due

to inaccurate estimations in the current V (St+1)’s. When λ = 1, the average reward advantage

estimator updates Ât using a Monte Carlo simulation, leading to low to no bias but high variance,

due to the sum of the estimated TD error terms δt+ℓ. This hyperparameter λ thus provides the

trade-off between bias and variance.

2.6 CAPM model and alpha preservation

The Capital Asset Pricing Model (CAPM) is a cornerstone of modern financial theory that

offers a method to assess the expected return on an investment and quantify the systematic

risk associated with it. At its core, CAPM assumes that the expected return on a portfolio

equals the rate on a risk-free security plus a risk premium. The risk premium is derived from the

market risk, also known as the non-diversifiable or systematic risk, which cannot be mitigated

through diversification (Sharpe, 1964). This risk is measured by the beta (β) coefficient, which

represents the tendency of the security’s returns to respond to swings in the market. The CAPM

is encapsulated by the equation:

E[Rp,t] = Rf + β(E[Rm,t]−Rf ), (2.16)

where

• E[Rp,t] is the expected return rate on the portfolio p over time;

• Rf is the risk-free rate of return, which is usually the rate of Treasury bond;



12 W. Zhou

• E[Rm,t] is the expected return rate of the market over time.

In the context of portfolio management, the alpha (α) coefficient, also known as “Jensen’s alpha”,

denotes the excess return on an investment relative to the return predicted by the CAPM. It is

computed as the intercept term in a time series regression derived from Eq.2.16:

Rp,t −Rf = αp + βp(Rm,t −Rf ) + εp,t, (2.17)

where Rp,t is the time series of the portfolio’s realized rate of return (Fama and French, 2004).

Preservation of alpha, therefore, means safeguarding this excess return which represents the value

added by the trading strategy. After adding the data of the market crash to the training data,

if the DRL trading agent still maintains a high level of α, this indicates that the DRL agent

demonstrates a certain level of resilience against abnormal market data in the training set.

3. Methodology

3.1 Gymnasium Environment: trading simulator

Gymnasium is a popular open-source Python library that provides a standard API to commu-

nicate between reinforcement learning algorithms and environments. It is a fork of the OpenAI

Gym (Brockman et al., 2016) by its maintainers at the Farama Foundation. Gymnasium includes

a set of task environments for classic reinforcement-learning problems, as well as the ability to

customize new environments through its Env API. We will exploit this ability to train and test

our stock trading agents.

Stock trading tasks are stochastic and discrete-time in nature, so we model it as a Markov Decision

Process (MDP) control problem. The customized environment should stimulate the real-world

stock markets and provide realistic feedback, namely rewards, corresponding to interactions with



Stock Trading with Reinforcement Learning 13

the agent. We thus construct the simulator with the historical daily market data for the 30

constituent stocks of the Dow Jones Industrial Average index.

We formulate our environment as a modified variant of the implementation by Liu et al. (2022).

The State Space S is a set of the environment and agent states. In other words, at each time

step t, the state st ∈ S should describe the current state of the market and the current portfolio.

Given our selection of stocks, st consists of

• Close price pt ∈ R30: daily close prices that the agent trade on.

• Selected m indicators Mt ∈ R30×m: optional technical indicators for additional information.

• Current holding ht ∈ Z30: current portfolio holding of each stock in shares.

• Cash balance bt ∈ R: cash component in the portfolio.

For simplicity, we include only the publicly available indicators of daily opening, high, and low

prices, as well as the daily trading volume. We also restrict the cash balance to be non-negative and

the shareholdings to be only non-negative whole numbers. After column-major order flattening

of Mt, we have each state st as a vector of 181 elements.

The initial state s0 of the environment is a vector with entry b0 = 1, 000, 000 as cash balance,

and entries of 0 elsewhere. This represents a starting wealth of one million dollars and nothing

else. During training epochs, we can add random variations to b0 to encourage exploration.

The action space A is the set of allowed actions that the agent can choose to perform. Due

to nonnegative constraints on bt and ht, for each stock i of the 30 stocks, there is a maximum

amount of shares that the agent can buy or sell, denoted as Nb, Ns. The stock’s action space ai

is a continuous box from -1 to 1, where a negative value represents the proportion of Ns shares

to sell, and a positive value represents the proportion of Nb shares to buy. The number of shares

to trade is always rounded down, as fractional trading is not a common practice in stock trading.



14 W. Zhou

The reward function Rt+1 = r(st, at) provides immediate feedback to the agent’s actions. In the

training process, the agent should adjust its policy to maximize the total rewards, discounted

or undiscounted. Since our benchmark for agent performance is the rate of portfolio return, we

define the step reward as changes in portfolio value, so

Rt+1 := hT
t+1pt+1 + bt+1 − hT

t pt − bt. (3.18)

The agent thereby aims to maximize the total positive change in the value of the portfolio.

3.2 Experiment procedures

We explore two research questions in this thesis. The first question is formulated in a natural

and intuitive manner, whereas the second question involves a more logically complex formulation.

As presented in Eq. 2.15, the hyperparameter lambda (λ) adjusts the degree of bootstrapping

between Temporal Difference (TD) and a Monte Carlo (MC) simulation of the actual total future

return. A lower λ increases the weight of the TD estimation, thus leading to a higher bias from the

latest training data. Since temporal differences are computed directly using the current model,

we hypothesize that a lower λ may result in more dependence on the current policy. We thus want

to explore the effect of lower λ values in tackling catastrophic forgetting in abnormal training

data. In the context of stock trading, we formulate two research questions in this thesis:

1. Does average reward reinforcement learning agents perform at a level comparable to the

discounted reward PPO agents, without the need to tune discounting factors?

2. Can a trader use a lower λ to make the average-reward agents preserve their lambda against

longer market anomalies?

The trading environment is set up to answer these questions with empirical evidence. To ensure

that our results are representative of the mainstream traders in the U.S. stock market, we focus



Stock Trading with Reinforcement Learning 15

on the latest data of the major companies, whose stocks are included as components of the Dow

Jones Industrial Average (DJIA) index. We download the open market data of the 30 stocks from

Yahoo Finance from Jan 1, 2015, to Jan 1, 2024 at a frequency of per trading day, and set up

the environment for trading daily close prices, as detailed in Section 3.1.

We base the training of the agents on the Stable Baseline 3 (SB3, Raffin et al. (2021)) package.

SB3 provides a set of reliable implementations of numerous reinforcement learning algorithms,

including the PPO algorithm for discounted-reward MDPs. For the average-reward agents, we use

the algorithm proposed by Ma et al. (2021), which only requires modifications to the advantage

estimations of the basic PPO, as described in Section 2.5. Thus, our average-reward agents are

trained by integrating SB3’s PPO implementation with the updated advantage estimator in

Eq.2.8.

To answer the first question, each agent is trained using data from the start of 2015 to the end

of 2022. Then, we test the trained agent using a testing environment with the stock data of

2022 and 2023 to evaluate their performance in out-of-sample scenarios. We will train a batch of

models with randomized seeds using different gamma values with discounted reward PPO, and

then compare their performance to that of the batch trained with average-reward learning. We

will answer the first question based on their rates of return over the two testing years.

To answer the second question, we will use the 2020 stock market crash as an example of market

anomalies. Since the market crash spanned from February 20 to April 7, we make three roughly

15-day intervals with four dates: Feb 20, Mar 6, Mar 21, and Apr 5. We will use each date as the

training ending date to train a random sample of average reward agents using different lambda

values. Then, we test these trained agents using 2022-2024 data, when the market has resumed

normality, to empirically calculate and compare their alpha performance in normal data. This

comparison will answer the second research question.



16 W. Zhou

Fig. 1. Violin diagram of the rates of return in each gamma’s sample of trained agents. The
plot shows the variations in the rates of returns by agents trained with each gamma value. The width of
the violin indicates the distribution at each rate of return. Compared to the discounted-reward agents,
the sample of average-reward agents shows a very compact violin, indicating a consistent performance
across different random seeds.

4. Results

4.1 Performance of average and discounted reward agents

We chose an array of common values for the discounting factor γ and trained a random sample of

50 discounted-reward PPO agents for each γ value while holding other hyperparameters constant

at SB3’s PPO default. The training data consisted of the 30 stocks’ daily open-market data

from Jan 01, 2015, to Dec 31, 2021, and we tested their trading actions using data from Jan 01,

2022, to Jan 01, 2024. We then applied the same testing procedures to a random sample of 50

average-reward agents.

Figure 1 presents a violin diagram comparing the distribution of mean relative return for agents

trained across various gamma values. The widths of the violins at different returns indicate the



Stock Trading with Reinforcement Learning 17

Fig. 2. Box-plot of the rates of return in each gamma’s sample with outliers removed. This
plot shows the stock-trading performances of the sample of agents trained with different discounting
factors. We observe no clear monotonic trend in the median rates of returns as gamma changes, whereas
the average-reward agents constantly outperform almost all of the discounted-reward agents.

probability density of the agents achieving that return. This visualization illustrates the variability

and distribution of performance at each gamma level.

The data suggests an associativity between lower gamma values and broader distributions of

returns, implying higher unpredictability in the performance of the agents. This might be due

to lower gamma values placing less emphasis on future rewards, which can lead to short-sighted

decision-making in the context of investment strategies. Conversely, as gamma values increase to

approach 1, the distribution of returns narrows, indicating more consistent performance across

different test cases.

The average-reward agent sample shows a very narrow distribution, hinting at a high degree

of consistency across different agents. The relatively compact violin suggests that the average-



18 W. Zhou

reward approach provides a stable performance regardless of the random seeds, which might be

indicative of a more reliable investment strategy in the face of diverse market conditions.

To better examine whether a clear optimization trend in gamma exists, we will examine the

distribution of the rates of return relative to gammas with outliers removed. We define the

interquartile range as the distance between a sample’s first and third quartile and consider a data

point an outlier if it is more than 1.5 times IQR lower than the first quartile or 1.5 times IQR

higher than the third quartile. With these outliers removed, Figure 2 depicts a box plot of the

rate of returns for the same sample of agents.

We observe no monotonic relationship between the median rate of return and the gamma values

of the sampled models. This suggests a lack of a consistent optimization trend in tuning the

discounting factor for discounted-reward agents. On the contrary, the box for the average-reward

agents is positioned higher on the rate-of-return scale while demonstrating a smaller IQR than

most of the boxes corresponding to the discounted-reward agents. This suggests that not only do

the average-reward agents tend to produce higher returns in stock trading, but it also do so with

less variance, reinforcing the interpretation from Figure 1 of it being a more consistent approach.

4.2 Market crash in training data for agents with different lambdas

We select a list of four common values for lambda, the hyperparameter that controls the degree

of bootstrapping between Monte Carlo and temporal difference for advantage estimation in the

average-reward algorithm. With a λ ∈ [0.5, 0.6, 0.75, 0.85, 0.95, 0.999], we train a random sample

of 10 average-reward agents for each of the training ending dates we sample before, during, and

after the 2020 stock market crash, as described in Section 3.2. The starting date of the training

data is Jan 01, 2015, for all agents. For the testing data, we do not use the data immediately after



Stock Trading with Reinforcement Learning 19

the market crash because the market experienced a long boom due to expansionary fiscal and

monetary policies by the government to help the economy recover from the pandemic (Gravelle

and Marples, 2021). To ensure that the market data for testing is representative of the market

normality, we manually inspect the history of the DJIA index and select the testing data to be

from Dec 01, 2021, to Jun 01, 2022, when the market had finished resuming from the crash. This

allows us to evaluate their performance in a normal market when the market dynamics exhibit

a similar paradigm to the market before the market crash.

Figure 3 provides a preliminary examination of how agents with different λ values respond to

the presence of the market crash in training data. We calculate each agent’s trading portfolio’s

current relative value as the ratio of the current portfolio value to the initial portfolio value. We

then plot them by λ value, in groups of the training end time, to yield Figure 3. For readability,

Figure 3 presents only the agents that give a median level of rate of return over the entire testing

period at each choice of λ.

We would like to draw special attention to the changes to the portfolio value curve after the

market crash has begun. It is noticed that the agents with λ = 0.999 and λ = 0.95 exhibit a

great drop in portfolio value after the first 15 days of the market crash are added to the training

data, whereas the agent with λ = 0.5 does not do so until nearly 45 days into the market crash.

Although this naive direct inspection of the portfolio value curve gives some insight that may

support our hypothesis, this approach has several caveats:

• Due to the stochastic nature of any deep algorithm, agent behavior may change abruptly

in a way that is not meaningful for our analysis. An example is the agent with λ = 0.75

that demonstrates a considerable drop in portfolio value from the training ending date Jan

06 to Jan 21, even before the market crash or other market anomalies start.

• According to the CAPM model, trading portfolios with higher profits tend to have a higher



20 W. Zhou

Fig. 3. Plots of median-performing agents’ portfolio value over time by training time and
lambdas. This plot shows the naive way of examining stock trading performance, which is to examine
the time series of portfolio value. Here we present the models with a median rate of return in the sample
of each (training-ending time, lambda) pair. One should pay special attention to changes in each agent’s
value curve, i.e., curves with the same color after the market crash data is added to training (training
ending later than 2020-02-20). Agents with lambda 0.999 and 0.95 exhibit a great drop in performance
after the first 15 days of market crash data are added into the training, while agents with lambda 0.5
don’t do so until all 45 days of market crash data are added.



Stock Trading with Reinforcement Learning 21

volatility. Thus, although some agents tend to have a high portfolio value, the current plot

fails to quantify the variance level in the value. We need a new approach to control for this

exogenous factor.

Therefore, we continue to analyze the alpha (α) and beta (β) coefficients of the sampled agents,

as defined in Eq.2.17. By definition, α of an agent’s portfolio measures its ability to generate

excess return, while controlling for the risk premium from excess volatility. This allows us to

solve the second caveat. Furthermore, unlike relative portfolio value, which is a time series, the

alpha is merely a single statistic for each agent. We can conveniently plot and compare the average

changes in α as market crash data is added to the training data, as demonstrated by the box

plot in Figure 4. This addresses the first caveat.

We make a few observations regarding the changes in alpha values for agents trained with the

market crash data. For agents with λ = 0.999 and λ = 0.95, we observe a drop in alpha from the

training ending time of Feb 20 to March 06, when the first 15 days of market crash data get added

to the training set. On the contrary, agents with smaller lambdas see drops delayed. For agents

with λ = 0.85, we observe the decrease in average alpha when the second 15-day batch of market

crash data is added, and for agents with λ = 0.75, the mean alpha does not drop significantly

until the third 15-day batch of market crash data. For the lowest values of λ we experimented

with, λ = 0.5 and λ = 0.6 agents do not demonstrate the dramatic downturn in mean portfolio

alpha, even when all 45 days’ data of the 2020 stock market crash is added to their training set.

These observations showcase that higher lambda values may lead to agents that are more sensitive

to recent market changes. The drop in average alpha for agents with λ = 0.999 and λ = 0.95

after the inclusion of early crash data suggests these agents may be over-fitting to the recent

market crash conditions rather than maintaining the strategy they learned that perform well

under normal market conditions. On the contrary, agents with lower lambda values showing



22 W. Zhou

Fig. 4. Box plot of alpha’s of portfolios by agents trained with different ending dates by
lambda values. This plot demonstrates the changes in each stock-trading model’s alpha when they
are trained with different lambda values and when the market crash data gets added to the training
set. Since the testing takes place with data in a normal market, a higher alpha means the model does
better in preserving its learned trading strategy when market anomaly data gets added to the training
set. The dotted line marks the dynamics of the average alpha as market crash data is added to training,
for samples of models with different lambdas. We observe that the drop in average alpha happens for
lambda 0.999 and 0.95 agents in the first 15-day batch of market crash, for lambda-0.85 agents in the
2nd batch, and for lambda-0.75 agents in the third batch. For lambda-0.5 and lambda-0.6 agents, we
observe no significant drops in alpha. This might be indicative of smaller lambda values’ effect to alpha
preservation in abnormal training data, though we discuss the caveats of this experiment in Section 5.2.



Stock Trading with Reinforcement Learning 23

delayed responses to the crash data might indicate a more conservative learning process. These

agents seem to rely more on long-term trends rather than recent events, which could lead to a

more stable, though potentially less reactive, performance in turbulent market conditions.

Nevertheless, we note that with a sample of only 10 models for each training-ending date, there

are potential questions about the statistical significance of these findings. We will discuss this in

Section 5.2.

5. Discussion

In this thesis, we have demonstrated the significant potential of Deep Reinforcement Learn-

ing (DRL) in revolutionizing investment science, particularly within the realm of stock trading

strategies. Our investigation into the comparative performance of average and discounted reward

agents, underpinned by the Proximal Policy Optimization (PPO) algorithm, reveals the poten-

tial of DRL to manage complex financial problems. However, it also highlights the challenges and

returns in fine-tuning models to navigate the intricacies of the financial market.

5.1 Summary of findings

In experiments, we observed variations in performance, measured by portfolio rate of return,

among the discounted-reward agents trained by different discount factors, γ. A significant portion

of existing research within the intersection of DRL and finance has predominantly employed the

discounted-reward frameworks, often defaulting to this setup without extensive exploration of

alternatives. Our study challenges this norm by investigating the efficacy of average-reward agents

in trading scenarios. Remarkably, our findings suggest that the average-reward trading agents not

only deliver consistently high rates of return but also sidestep the complexities associated with



24 W. Zhou

selecting a γ. This simplification reduces the burden of hyperparameter tuning. It thus could

make DRL more accessible and practical for a wider range of applications in finance, particularly

for practitioners who may not have the extensive computing power to tackle the non-trivial task

of hyperparameter tuning in DRL.

Concurrently, our investigation into lambda (λ) tuning for alpha preservation marks represents a

step in understanding how to adjust average-reward reinforcement learning models for financial

markets. Alpha, which measures a strategy’s ability to outperform the market benchmarks, is

a crucial metric for any trading model. Our experiments using the 2020 stock market crash

demonstrated the potential to maintain an agent’s alpha when abnormal market data is included

in the training data. By adjusting for a lower λ, we can prevent the agents from catastrophically

forgetting about the learned trading strategies in the event of market anomalies.

5.2 Future work

While this thesis presents significant explorations in the application of Deep Reinforcement Learn-

ing DRL to stock trading, it is crucial to acknowledge the limitations of our experiments and the

scope for future research. One notable caveat of our study is the reliance on simplified data and

the use of default hyperparameters, with the exception of λ. The real-world financial markets

operate at a much finer granularity, often trading in seconds rather than days, and the dynamics

at this scale can be vastly different from those observed in our experiments. Besides, as shown

in Figure 2, we compared the portfolio return of our agents to the market portfolio of the DJIA

stocks, i.e., the proportion of wealth invested in each stock is proportional to their market capital-

ization. To further assess the advantages of RL agents, future studies should consider using more

complicated traditional strategies as the baseline models, such as the Black-Litterman model

with historical data (Black and Litterman, 1992).



Stock Trading with Reinforcement Learning 25

Moreover, the training process in our experiment may not fully resemble the application of RL

in real-world stock trading. As Chong and Ng (2008) discussed, professional traders may use

artificial technical indicators, such as Moving Average Convergence Divergence, to guide their

predictions of price variations in the stock market. Such artificial indicators are not included in

the training data of our experiments. Professional traders with access to substantial computing

power may also engage in extensive hyperparameter tuning beyond what was explored in this

study. The applicability of our findings about average-reward RL in such fine-tuned tasks remains

an unanswered question. This highlights the need for further research that incorporates more

complex market data and explores a broader range of hyperparameter optimizations to validate

and potentially refine our findings.

For our second research question, our investigation into the impact of λ tuning on alpha preserva-

tion was constrained by limited computational resources. We only explore 6 λ values, cross-walked

with training endpoints spaced out by 15-day intervals. Future studies should experiment with

a more granular set of these parameters to quantify the effect of different λ values. Moreover,

for each λ-endpoint pair, our random sample of models has a size of only 10, which may have

impacted the statistical significance of our results. Such enhancements would provide a more ro-

bust quantitative analysis of λ’s effect on the resistance of the average-reward agent to abnormal

training data, offering clearer insights into the potential benefits and limitations of this approach.

Furthermore, we explored the 2020 stock market crash as an example of market anomalies. This

market crash lasted for over one month, so we can detail how agents’ behaviors evolve as this

abnormal data gets added to the training set. We found that agents with lower lambdas preserve

their alpha against longer periods of abnormal training data. However, it is worth questioning to

what extent this crash is representative of broader market anomalies. To ensure the universality

of our findings, future studies should either provide more extensive experiments on other market



26 W. Zhou

anomalies, or explore theoretical explanations of the effect of lowering lambda.

Looking ahead, future work in this field could address these limitations by leveraging more ad-

vanced computational resources to conduct experiments at a scale and complexity that more

closely mirrors real-world trading conditions. Investigating the interplay between various hy-

perparameters, in addition to lambda, could uncover new dimensions of model optimization and

performance enhancement. Moreover, a more granular approach to model training and evaluation,

encompassing a wider range of market conditions and trading frequencies, would be instrumental

in validating the efficacy of DRL models in diverse trading scenarios.

Acknowledgments

I would like thank my thesis advisor, Professor Shangtong Zhang, for providing me with detailed

guidance in surveying reinforcement learning algorithms. I would also like to thank Professor

Chen-Yu Wei for his valuable suggestions during the review of this thesis.



REFERENCES 27

References

Black, Fischer and Litterman, Robert. (1992). Global portfolio optimization. Financial

Analysts Journal 48(5), 28–43.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schul-

man, John, Tang, Jie and Zaremba, Wojciech. (2016). Openai gym. arXiv preprint

arXiv:1606.01540 .

Buehler, Hans, Gonon, Lukas, Teichmann, Josef, Wood, B. Dan, Mohan, Baranid-

haran and Kochems, Jonathan. (2019, 3). Deep hedging: Hedging derivatives under generic

market frictions using reinforcement learning. Social Science Research Network .

Chong, Terence Tai-Leung and Ng, Wing-Kam. (2008). Technical analysis and the london

stock exchange: testing the macd and rsi rules using the ft30. Applied Economics Letters 15(14),

1111–1114.

Evtimov, Ivan, Eykholt, Kevin, Fernandes, Earlence, Kohno, Tadayoshi, Li, Bo,

Prakash, Atul, Rahmati, Amir and Song, Dawn. (2017). Robust physical-world attacks

on machine learning models. arXiv preprint arXiv:1707.08945 2(3), 4.

Fama, Eugene F. and French, Kenneth R. (2004). The capital asset pricing model: Theory

and evidence. The Journal of Economic Perspectives 18(3), 25–46.

Gravelle, Jane G. and Marples, Donald J. (2021, 2). Fiscal policy and recovery from the

COVID-19 recession. Technical Report R46460.

Guan, Mao and Liu, Xiao-Yang. (2022). Explainable deep reinforcement learning for port-

folio management: an empirical approach. In: Proceedings of the Second ACM International

Conference on AI in Finance, ICAIF ’21. New York, NY, USA: Association for Computing

Machinery.



28 REFERENCES

Jain, Abhinav, Patel, Hima, Nagalapatti, Lokesh, Gupta, Nitin, Mehta, Sameep,

Guttula, Shanmukha, Mujumdar, Shashank, Afzal, Shazia, Sharma Mittal, Ruhi

and Munigala, Vitobha. (2020). Overview and importance of data quality for machine

learning tasks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining , KDD ’20. New York, NY, USA: Association for Computing

Machinery. p. 3561–3562.

Kemker, Ronald, McClure, Marc, Abitino, Angelina, Hayes, Tyler and Kanan,

Christopher. (2018, Apr.). Measuring catastrophic forgetting in neural networks. Proceedings

of the AAAI Conference on Artificial Intelligence 32(1).

Kim, MyeongSeop, Kim, Jung-Su, Choi, Myoung-Su and Park, Jae-Han. (2022, 9).

Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncer-

tainty. Sensors (Basel) 22(19), 7266.

Kirkpatrick, James, Pascanu, Razvan, Rabinowitz, Neil, Veness, Joel, Desjardins,

Guillaume, Rusu, Andrei A., Milan, Kieran, Quan, John, Ramalho, Tiago,

Grabska-Barwinska, Agnieszka, Hassabis, Demis, Clopath, Claudia, Kumaran,

Dharshan et al. (2017). Overcoming catastrophic forgetting in neural networks. Proceed-

ings of the National Academy of Sciences 114(13), 3521–3526.

Konda, Vijay R. and Tsitsiklis, John N. (2003, 1). OnActor-Critic algorithms. Siam Journal

on Control and Optimization 42(4), 1143–1166.

Kumar, Santosh, Kumar, Ankit, Singh, Kamred Udham and Patra, Sujit Kumar.

(2023). The six decades of the capital asset pricing model: A research agenda. Journal of Risk

and Financial Management 16(8).

Li, Yuming, Ni, Pin and Chang, Victor. (2019, 12). Application of deep reinforcement

learning in stock trading strategies and stock forecasting. Computing 102(6), 1305–1322.



REFERENCES 29

Liu, Xiao-Yang, Yang, Hongyang, Chen, Qian, Zhang, Runjia, Yang, Liuqing, Xiao,

Bowen and Wang, Christina Dan. (2022). Finrl: A deep reinforcement learning library

for automated stock trading in quantitative finance.

Ma, Xiaoteng, Tang, Xiaohang, Xia, Li, Yang, Jun and Zhao, Qianchuan. (2021).

Average-reward reinforcement learning with trust region methods. CoRR abs/2106.03442.

Mahmood, A. Rupam, Korenkevych, Dmytro, Vasan, Gautham, Ma, William and

Bergstra, James. (2018). Benchmarking reinforcement learning algorithms on real-world

robots.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex, Antonoglou,

Ioannis, Wierstra, Daan and Riedmiller, Martin. (2013). Playing atari with deep

reinforcement learning.

Perotto, Filipo Studzinski and Vercouter, Laurent. (2018). Tuning the Discount Factor

in Order to Reach Average Optimality on Deterministic MDPs. In: International Conference on

Innovative Techniques and Applications of Artificial Intelligence. Cambridge, United Kingdom.

Pitis, Silviu. (2019). Rethinking the discount factor in reinforcement learning: A decision

theoretic approach.

Puterman, Martin L. (2014, 8). Markov Decision Processes: Discrete Stochastic Dynamic

Programming . John Wiley & Sons.

Raffin, Antonin, Hill, Ashley, Gleave, Adam, Kanervisto, Anssi, Ernestus, Max-

imilian and Dormann, Noah. (2021). Stable-baselines3: Reliable reinforcement learning

implementations. Journal of Machine Learning Research 22(268), 1–8.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan, Michael and Abbeel,

Pieter. (2015). High-dimensional continuous control using generalized advantage estimation.



30 REFERENCES

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec and Klimov,

Oleg. (2017). Proximal policy optimization algorithms.

Sharpe, William F. (1964, 9). Capital asset prices: a theory of market equilibrium under

conditions of risk. The Journal of finance (New York. Print) 19(3), 425–442.

Silver, David, Huang, Aja, Maddison, Christopher, Guez, Arthur, Sifre, Lau-

rent, Van Den Driessche, George, Schrittwieser, Julian, Antonoglou, Ioan-

nis, Panneershelvam, Veda, Lanctot, Marc, Dieleman, Sander, Grewe, Dominik,

Nham, John, Kalchbrenner, Nal, Sutskever, Ilya, Lillicrap, Timothy P., Leach,

Madeleine, Kavukcuoglu, Koray, Graepel, Thore et al. (2016, 1). Mastering the game

of Go with deep neural networks and tree search. Nature 529(7587), 484–489.

Sorensen, Eric, Qian, Edward, Schoen, Robert and Hua, Ronald. (2004, 12). Multiple

alpha sources and active management. Journal of Portfolio Management - J PORTFOLIO

MANAGE 30, 39–45.

Sutton, Richard S. (1988). Learning to predict by the methods of temporal differences.

Machine learning 3, 9–44.

Szepesvari, Csaba. (2010, 1). Algorithms for reinforcement learning . Morgan & Claypool

Publishers.

Tadepalli, Prasad and Ok, DoKyeong. (1998). Model-based average reward reinforcement

learning. Artificial intelligence 100(1-2), 177–224.

Wei, Chen-Yu, Jafarnia-Jahromi, Mehdi, Luo, Haipeng and Jain, Rahul. (2021).

Learning infinite-horizon average-reward mdps with linear function approximation.

Yang, Hongyang, Liu, Xiao-Yang, Zhong, Shan and Walid, Anwar. (2020). Deep rein-



REFERENCES 31

forcement learning for automated stock trading: An ensemble strategy. In: Proceedings of the

first ACM international conference on AI in finance. pp. 1–8.


